608 research outputs found

    Belief heterogeneity and survival in incomplete markets

    Get PDF
    In complete markets economies (Sandroni [16]), or in economies with Pareto optimal outcomes (Blume and Easley [10]), the market selection hypothesis holds, as long as traders have identical discount factors. Traders who survive must have beliefs that merge with the truth. We show that in incomplete markets, regardless of traders’ discount factors, the market selects for a range of beliefs, at least some of which do not merge with the truth. We also show that impatient traders with incorrect beliefs can survive and that these incorrect beliefs impact prices. These beliefs may be chosen so that they are far from the truth

    Signal processing with Levy information

    Get PDF
    Levy processes, which have stationary independent increments, are ideal for modelling the various types of noise that can arise in communication channels. If a Levy process admits exponential moments, then there exists a parametric family of measure changes called Esscher transformations. If the parameter is replaced with an independent random variable, the true value of which represents a "message", then under the transformed measure the original Levy process takes on the character of an "information process". In this paper we develop a theory of such Levy information processes. The underlying Levy process, which we call the fiducial process, represents the "noise type". Each such noise type is capable of carrying a message of a certain specification. A number of examples are worked out in detail, including information processes of the Brownian, Poisson, gamma, variance gamma, negative binomial, inverse Gaussian, and normal inverse Gaussian type. Although in general there is no additive decomposition of information into signal and noise, one is led nevertheless for each noise type to a well-defined scheme for signal detection and enhancement relevant to a variety of practical situations.Comment: 27 pages. Version to appear in: Proc. R. Soc. London

    Communications Biophysics

    Get PDF
    Contains reports on five research projects
    corecore