14 research outputs found

    Restrictive Type of Replication of Ovine/Caprine Lentiviruses in Ovine Fibroblast Cell Cultures

    Get PDF
    AbstractCaprine arthritis–encephalitis virus (CAEV) is a natural lentivirus pathogen of goats. CAEV, like all members of the ovine/caprine lentivirus family, has anin vivotropism for cells of the monocyte/macrophage cell lineage and activation of viral gene expression is observed only following differentiation of monocytes to macrophages. In addition to cells of the monocyte/macrophage lineage, CAEV and the closely related maedi visna virus of sheep (MVV) can also replicate productively in fibro-epithelial cells derived from synovial membrane of goats (GSM). However, these viruses varied greatly in their ability to replicate in fibroblasts. We studied the biological and biochemical properties of CAEV and maedi-visna virus (MVV) of sheep following inoculation into the three ovine/caprine cell types. Our data showed no substantial differences in virus titers, viral protein biosynthesis, or processing of the viral proteins between CAEV and MVV following inoculation into primary macrophages and GSM cells. However, unlike MVV, CAEV failed to replicate productively in ovine fibroblasts (sheep choroid plexus cells). This correlated with a specific but abnormal proteolytic cleavage of the envelope glycoprotein of the virus. This abnormal proteolytic cleavage represents a novel type of host cell restriction of lentivirus replication

    Immunoprophylaxis against AIDS in macaques with a lentiviral DNA vaccine

    Get PDF
    AbstractWe earlier reported that immunization of macaques with a reverse transcriptase-deleted SHIVKU2 (ΔrtSHIVKU2) plasmid that contained HIV-1(HXB2) env and SIV gag–nef induced protection against AIDS caused by challenge virus SHIV89.6P with a heterologous env. We further deleted vif and integrase from ΔrtSHIVKU2 and substituted the 3â€ČLTR with SV40 poly A sequences, creating Δ4SHIVKU2 (M) and a parallel construct containing gag–nef of HIV-1SF2, Δ4SHIVKU2 (H). Six macaques received two intramuscular injections of the (M) DNA, and another six received three injections of the (H) DNA. Three of the latter group received two post-challenge boosts with (M) DNA vaccine. Seven virus control macaques were inoculated with SHIV89.6P. All twelve immunized macaques were challenged with SHIV89.6P virus, and CMI responses were measured by ELISPOT assays.Virus control animals all developed progressive infection, whereas vaccinated macaques from both groups controlled virus replication, with plasma viral loads dropping to undetectable levels between weeks 6 and 126 p.i. This DNA vaccine was efficacious even though it encoded Env, Gag, and Nef that were genetically distinct from the proteins in the challenge virus. The DNA vaccine induced broad-based protection without using viral proteins to boost the immunity

    Systemic Infection and Limited Replication of SHIV Vaccine Virus in Brains of Macaques Inoculated Intracerebrally with Infectious Viral DNA

    Get PDF
    AbstractSHIV deleted in two accessory genes, ΔvpuΔnef SHIVPPC, functioned well as a vaccine against later challenge with highly pathogenic SHIVKU, and it was able to reach the brain after oral inoculation of live virus. In this study, the proviral genome cloned into a plasmid was inoculated as DNA intracerebrally and spread systemically. Few regions of the brain had detectable proviral DNA by real-time PCR. Two measures of virus replication, detection of viral mRNA expression and circular proviral DNA, were negative for those brain regions, with the exception of the infection site in the right parietal lobe, whereas lymphoid tissues were positive by both measures. Histopathological analyses of all the sampled brain and spinal cord regions did not reveal any abnormalities. Despite intracerebral inoculation of the viral DNA, the brain was not targeted for high levels of virus replication

    Characterization of T-Cell Responses in Macaques Immunized with a Single Dose of HIV DNA Vaccine ▿ †

    No full text
    The optimization of immune responses (IR) induced by HIV DNA vaccines in humans is one of the great challenges in the development of an effective vaccine against AIDS. Ideally, this vaccine should be delivered in a single dose to immunize humans. We recently demonstrated that the immunization of mice with a single dose of a DNA vaccine derived from pathogenic SHIVKU2 (Δ4SHIVKU2) induced long-lasting, potent, and polyfunctional HIV-specific CD8+ T-cell responses (G. Arrode, R. Hegde, A. Mani, Y. Jin, Y. Chebloune, and O. Narayan, J. Immunol. 178:2318-2327, 2007). In the present work, we expanded the characterization of the IR induced by this DNA immunization protocol to rhesus macaques. Animals immunized with a single high dose of Δ4SHIVKU2 DNA vaccine were monitored longitudinally for vaccine-induced IR using multiparametric flow cytometry-based assays. Interestingly, all five immunized macaques developed broad and polyfunctional HIV-specific T-cell IR that persisted for months, with an unusual reemergence in the blood following an initial decline but in the absence of antibody responses. The majority of vaccine-specific CD4+ and CD8+ T cells lacked gamma interferon production but showed high antigen-specific proliferation capacities. Proliferative CD8+ T cells expressed the lytic molecule granzyme B. No integrated viral vector could be detected in mononuclear cells from immunized animals, and this high dose of DNA did not induce any detectable autoimmune responses against DNA. Taken together, our comprehensive analysis demonstrated for the first time the capacity of a single high dose of HIV DNA vaccine alone to induce long-lasting and polyfunctional T-cell responses in the nonhuman primate model, bringing new insights for the design of future HIV vaccines

    Longitudinal study to assess the safety and efficacy of a live-attenuated SHIV vaccine in long term immunized rhesus macaques

    Get PDF
    AbstractLive-attenuated viruses derived from SIV and SHIV have provided the most consistent protection against challenge with pathogenic viruses, but concerns regarding their long-term safety and efficacy have hampered their clinical usefulness. We report a longitudinal study in which we evaluated the long-term safety and efficacy of ΔvpuSHIVPPC, a live virus vaccine derived from SHIVPPC. Macaques were administered two inoculations of ΔvpuSHIVPPC, three years apart, and followed for eight years. None of the five vaccinated macaques developed an AIDS-like disease from the vaccine. At eight years, macaques were challenged with pathogenic SIV and SHIV. None of the four macaques with detectable cellular-mediated immunity prior to challenge had detectable viral RNA in the plasma. This study demonstrates that multiple inoculations of a live vaccine virus can be used safely and can significantly extend the efficacy of the vaccine, as compared to a single inoculation, which is efficacious for approximately three years
    corecore