106 research outputs found

    Spindle rotation in human cells is reliant on a MARK2-mediated equatorial spindle-centering mechanism

    Get PDF
    This work was supported by a Cancer Research UK Career Development Award (C28598/A9787), Biotechnology and Biological Sciences Research Council Project grant (BB/R01003X/1), and a Queen Mary University of London Laboratory startup grant to V.M. Draviam, a Universiti Brunei Darussalam PhD studentship to I. Zulkipli, a Queen Mary University of London PhD studentship to M. Hart, a London Interdisciplinary Biosciences Consortium Biotechnology and Biological Sciences Research Council–Doctoral Training Partnerships PhD studentship to D. Dang (cosupervised by V.M. Draviam and N. Sastry; BB/M009513/1), and an Islamic Development Bank PhD studentship to P. Gul

    Dynein, microtubule and cargo: a ménage à trois

    Get PDF
    To exert forces, motor proteins bind with one end to cytoskeletal filaments, such as microtubules and actin, and with the other end to the cell cortex, a vesicle or another motor. A general question is how motors search for sites in the cell where both motor ends can bind to their respective binding partners. In the present review, we focus on cytoplasmic dynein, which is required for a myriad of cellular functions in interphase, mitosis and meiosis, ranging from transport of organelles and functioning of the mitotic spindle to chromosome movements in meiotic prophase. We discuss how dynein targets sites where it can exert a pulling force on the microtubule to transport cargo inside the cell

    Reticulated Ceramics for Catalyst Support Applications

    No full text
    corecore