6,865 research outputs found

    A Note on Solid-State Maxwell Demon

    Full text link
    Starting from 2002, at least two kinds of laboratory-testable, solid-state Maxwell demons have been proposed that utilize the electric field energy of an open-gap n-p junction and that seem to challenge the validity of the Second Law of Thermodynamics. In the present paper we present some arguments against the alleged functioning of such devices.Comment: 9 pages, 4 figures. Foundations of Physics, forthcoming. arXiv admin note: substantial text overlap with arXiv:1101.505

    Four Paradoxes Involving the Second Law of Thermodynamics

    Get PDF
    Recently four independent paradoxes have been proposed which appear to challenge the second law of thermodynamics [1-8]. These paradoxes are briefly reviewed. It is shown that each paradox results from a synergism of two broken symmetries - one geometric, one thermodynami

    Casimir chemistry

    Get PDF
    It is shown that, at the nanoscale, the Casimir effect can be used to mechanically tune critical aspects of chemical reaction e.g., energies, equilibrium constants, activation energies, transition states, reaction rates by varying the spacing and composition of reaction vessel boundaries. This suggests new modalities for catalysts, nanoscale chemical manufacturing, chemical-mechanical engines, and biochemical processes in organisms

    Nonequilibrium heterogeneous catalysis in the long mean-free-path regime

    Get PDF
    It is shown that a standard principle of traditional catalysis-that a catalyst does not alter the final thermodynamic equilibrium of a reaction-can fail in low-pressure, heterogeneous gas-surface reactions. Kinetic theory for this epicatalysis is presented, and two well-documented experimental examples are detailed: surface ionized plasmas and hydrogen dissociation on refractory metals. This phenomenon should be observable over a wide range of temperatures and pressures, and for a broad spectrum of heterogeneous reactions. By transcending some constraints of equilibrium thermodynamics, epicatalysis might provide additional control parameters and synthetic routes for reactions, and enable product streams boosted in thermochemical energy or desirable species

    Spacecraft Trajectory Optimization Suite (STOPS): Optimization of Low-Thrust Interplanetary Spacecraft Trajectories Using Modern Optimization Techniques

    Get PDF
    The work presented here is a continuation of Spacecraft Trajectory Optimization Suite (STOpS), a master’s thesis written by Timothy Fitzgerald at California Polytechnic State University, San Luis Obispo. Low-thrust spacecraft engines are becoming much more common due to their high efficiency, especially for interplanetary trajectories. The version of STOpS presented here optimizes low-thrust trajectories using the Island Model Paradigm with three stochastic evolutionary algorithms: the genetic algorithm, differential evolution, and particle swarm optimization. While the algorithms used here were designed for the original STOpS, they were modified for this work. The low-thrust STOpS was successfully validated with two trajectory problems and their known near-optimal solutions. The first verification case was a constant-thrust, variable-time Earth orbit to Mars orbit transfer where the thrust was 3.787 Newtons and the time was approximately 195 days. The second verification case was a variable-thrust, constant-time Earth orbit to Mercury orbit transfer with the thrust coming from a solar electric propulsion model equation and the time being 355 days. Low-thrust STOpS found similar near-optimal solutions in each case. The final result of this work is a versatile MATLAB tool for optimizing low-thrust interplanetary trajectories

    Energy, Entropy and the Environment (How to Increase the First by Decreasing the Second to Save the Third)

    Get PDF
    Energy is the lifeblood of civilization, but inexpensive, high energy density sources are rapidly being depleted and their exploitation is severely degrading the environment. This paper explores a radical solution to this energy-environmental dilemma. In the last 10–15 years, the universality of the second law of thermodynamics has fallen into serious theoretical doubt [1–3].Should it prove experimentally violable, this would open the door to a nearly limitless reservoir of ubiquitous, clean, recyclable energy. If economical, it could precipitate paradigm shifts in energy production, utilization and politics. In this paper, recent challenges to the second law are reviewed, with focus given to one for which laboratory experiments are planned. Possible consequences of its violation for technology, society and the environment are explored
    • …
    corecore