10 research outputs found
Universal relation between longitudinal and transverse conductivities in quantum Hall effect
We show that any critical transition region between two adjacent Hall
plateaus in either integer or fractional quantum Hall effect is characterized
by a universal semi-circle relationship between the longitudinal and transverse
conductivities, provided the sample is homogeneous and isotropic on a large
scale. This conclusion is demonstrated both for the phase-coherent quantum
transport as well as for the incoherent transport.Comment: REVTEX 3.0, 1 figure, 4 pages. SISSA-08179
High-Frequency (> 100 GHz) and High-Speed (< 10 ps) Electronic Devices
Contains an introduction, reports on four research projects and a list of publications.Defense Advanced Research Projects Agency Contract MDA972-90-C-0021National Aeronautics and Space Administration Grant NAGW-4691National Aeronautics and Space Administration Grant 959705National Science Foundation Grant AST 94-23608National Science Foundation/MRSEC Grant DMR 94-00334MIT Lincoln Laboratory Advanced Concept Program Grant BX-5464U.S. Army Research Office Grant DAAH04-95-1-0610Hertz Foundation FellowshipU.S. Army - Office of Scientific Research Grant DAAH04-94-G-016
High-Frequency (>100 GHz) and High-Speed (<1 ps) Electronic Devices
Contains an introduction, reports on three research projects and a list of publications.Advanced Research Projects Agency Contract MDA972-90-C-0021National Aeronautics and Space Administration Grant NAG2-693National Aeronautics and Space Administration Contract 959705National Science Foundation/MRSEC Grant DMR 94-00334MIT Lincoln Laboratory Advanced Concept Program Contract BX-5464MIT Research Laboratory of Electronics Postdoctoral FellowshipRome Air Force Laboratory Graduate FellowshipU.S. Army Research Office Grant DAAL03-92-G-0251Hertz Foundation FellowshipU.S. Army Research Office/ASSERT Grant DAAH04-94-G-016
Recommended from our members
Applications of mesoscopic physics
This report discusses the following topics: Acoustical nondestructive evaluation of heterogeneous materials in the multiple scattering regime. Classical and quantum superdiffusion in a time-dependent random potential. Negative Magnetoresistance in Variable Range Hopping Conduction. Reproducible Conductance Fluctuations in Macroscopic Anderson Insulators. Feasibility of far-infared lasers using multiple semiconductor quantum wells
Recommended from our members
Applications of mesoscopic physics. Annual technical report, July 1992--June 1993
Research activities in the area ``applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves`` are briefly summarized. The main thrust in fundamental research is in the general areas of mesoscopic effects in disordered semiconductors and metals and the related field of applications of mesoscopic physics to the subject matter of classical wave propagation through disordered scattering media. Specific topics are Fabry-Perot interferometer with disorder: correlations and light localization; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; and transmission and reflection correlations of second harmonic waves in nonlinear random media. Research in applied physics centered on far infrared photon-assisted transport through quantum point contact devices and photon migration distributions in multiple scattering media. 7 refs
Recommended from our members
Applications of mesoscopic physics. [Dept. of Physics, UCLA, Los Angeles, California]
Research activities in the area applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves'' are briefly summarized. The main thrust in fundamental research is in the general areas of mesoscopic effects in disordered semiconductors and metals and the related field of applications of mesoscopic physics to the subject matter of classical wave propagation through disordered scattering media. Specific topics are Fabry-Perot interferometer with disorder: correlations and light localization; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; and transmission and reflection correlations of second harmonic waves in nonlinear random media. Research in applied physics centered on far infrared photon-assisted transport through quantum point contact devices and photon migration distributions in multiple scattering media. 7 refs
Recommended from our members
Applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: Imaging and tomography with multiply scattered classical waves. Final report
This is the final report on the grant, entitled `applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves`, which expired on September 14, 1994. The author summarizes the highlights of this research program, and lists the publications supported by this grant. The report is divided into sections, titled: application of mesoscopic fluctuations theory to correlations and fluctuations of multiply scattered light; quantum transport in localized electronic systems; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; high frequency quantum transport in quantum well devices