6 research outputs found

    FLRT3 is expressed in sensory neurons after peripheral nerve injury and regulates neurite outgrowth

    Get PDF
    We used a molecular screen to identify genes upregulated in regenerating adult rat dorsal root ganglion cells. FLRT3 mRNA and protein characterized by a fibronectin type III domain and a leucine-rich repeat motif was upregulated in damaged sensory neurons. The protein was then transported into their peripheral and central processes where the FLRT3 protein was localized to presynaptic axon terminals. In vitro, the FLRT3 protein was expressed at the cell surface, regulated neurite outgrowth in sensory neurons, but did not exhibit homophilic binding. FLRT3 was widely expressed in the developing embryo, particularly in the central nervous system and somites. However, in the adult, we found no evidence for accumulation or reexpression of the FLRT3 protein in damaged axons of the central nervous system. We conclude that FLRT3 codes for a putative cell surface receptor implicated in both the development of the nervous system and in the regeneration of the peripheral nervous system (PNS).This work was supported by the MRC and MNDA.Peer reviewe

    Increased neurogenesis and brain-derived neurotrophic factor in neurokinin-1 receptor gene knockout mice

    Get PDF
    It has previously been shown that chronic treatment with antidepressant drugs increases neurogenesis and levels of brain-derived neurotrophic factor in the hippocampus. These changes have been correlated with changes in learning and long-term potentiation and may contribute to the therapeutic efficacy of antidepressant drug treatment. Recently, antagonists at the neurokinin-1 receptor, the preferred receptor for the neuropeptide substance P, have been shown to have antidepressant activity. Mice with disruption of the neurokinin-1 receptor gene are remarkably similar both behaviourally and neurochemically to mice maintained chronically on antidepressant drugs. We demonstrate here that there is a significant elevation of neurogenesis but not cell survival in the hippocampus of neurokinin-1 receptor knockout mice. Neurogenesis can be increased in wild-type but not neurokinin-1 receptor knockout mice by chronic treatment with antidepressant drugs which preferentially target noradrenergic and serotonergic pathways. Hippocampal levels of brain-derived neurotrophic factor are also two-fold higher in neurokinin-1 receptor knockout mice, whereas cortical levels are similar. Finally, we examined hippocampus-dependent learning and memory but found no clear enhancement in neurokinin-1 receptor knockout mice. These data argue against a simple correlation between increased levels of neurogenesis or brain-derived neurotrophic factor and mnemonic processes in the absence of increased cell survival. They support the hypothesis that increased neurogenesis, perhaps accompanied by higher levels of brain-derived neurotrophic factor, may contribute to the efficacy of antidepressant drug therapy.This research was supported by the Wellcome Trust, a European Community Marie Curie fellowship to S.M. and a Boehringer Ingelheim Fonds Predoctoral Fellowship to M.P. C.A.G. is on the Wellcome Trust Four-year PhD in Neuroscience at UCL.Peer reviewe

    Local Translation in Primary Afferent Fibers Regulates Nociception

    Get PDF
    Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR) has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage - a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states

    A Semi-deterministic Wear Model Considering the Effect of Zinc Dialkyl Dithiophosphate Tribofilm

    Get PDF
    Tribochemistry plays a very important role in the behaviour of systems in tribologically loaded contacts under boundary lubrication conditions. Previous works have mainly reported contact mechanics simulations for capturing the boundary lubrication regime, but the real mechanism in which tribofilms reduce wear is still unclear. In this paper, the wear prediction capabilities of a recently published mechanochemical simulation approach (Ghanbarzadeh et al. in Tribol Int, 2014) are tested. The wear model, which involves a time- and spatially dependent coefficient of wear, was tested for two additive concentrations and three temperatures at different times, and the predictions are validated against experimental results. The experiments were conducted using a mini-traction machine in a sliding/rolling condition, and the spacer layer interferometry method was used to measure the tribofilm thickness. Wear measurements have been taken using a white-light interferometry. Good agreement is seen between simulation and experiment in terms of tribofilm thickness and wear depth predictions

    Rewarding effects of opiates are absent in mice lacking the receptor for substance P

    No full text
    Modulation of substance P activity offers a radical new approach to the management of depression, anxiety and stress(1-3). The substance P receptor is highly expressed in areas of the brain that are implicated in these behaviours, but also in other areas such as the nucleus accumbens which mediate the motivational properties of both natural rewards such as food and of drugs of abuse such as opiates(4-7). Here we show a loss of the rewarding properties of morphine in mice with a genetic disruption of the substance P receptor. The loss was specific to morphine, as both groups of mice responded when cocaine or food were used as rewards. The physical response to opiate withdrawal was also reduced in substance P receptor knockout mice. We conclude that substance P has an important and specific role in mediating the motivational aspects of opiates and may represent a new pharmacological route for the control of drug abuse
    corecore