13 research outputs found

    Regulation of collagen pathway biology during follicle maturation in the rat ovary

    Get PDF

    Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders

    Get PDF
    Acknowledgements Funding was provided by the Wellcome Trust and Tenovus Scotland. Prof Fragoso is the recipient of a Post Doctoral Science without Borders grant from the Brazilian National Council for Scientific and Technological Development (CNPq, 37450/2012- 7). We also thank Aberdeen Proteomics for assistance with the western blots as well as the Microscopy and Histology Core Facility at the University of Aberdeen for confocal microscopy.Peer reviewedPublisher PD

    Neuronal human BACE1 knock-in induces systemic diabetes in mice

    Get PDF
    Acknowledgements The authors thank S. Tammireddy (Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK) for technical support with the lipidomics component. Funding We would like to thank R. Simcox, Romex Oilfield Chemicals, for financial support for KP, and acknowledge additional contributions from the Scottish Alzheimer’s Research UK network for the lipidomics work. The College of Life Science and Medicine, University of Aberdeen, sponsored the imaging study. MD was funded by British Heart Foundation and Diabetes UK; NM was funded by a British Heart Foundation Intermediate Fellowship; KS was funded by a European Foundation for the Study of Diabetes/Lilly programme grant; and RD was funded by an Institute of Medical Sciences PhD studentship.Peer reviewedPublisher PDFPublisher PD

    Neuronal human BACE1 knockin induces systemic diabetes in mice

    Get PDF
    Aims: ÎČ-Secretase 1 (BACE1) is a key enzyme in Alzheimer’s disease pathogenesis that catalyses the amyloidogenic cleavage of amyloid precursor protein (APP). Recently, global Bace1 deletion was shown to protect against diet-induced obesity and diabetes, suggesting that BACE1 is a potential regulator of glucose homeostasis. Here, we investigated whether increased neuronal BACE1 is sufficient to alter systemic glucose metabolism, using a neuron-specific human BACE1 knockin mouse model (PLB4).Methods: Glucose homeostasis and adiposity were determined by glucose tolerance tests and EchoMRI, lipid species were measured by quantitative lipidomics, and biochemical and molecular alterations were assessed by western blotting, quantitative PCR and ELISAs. Glucose uptake in the brain and upper body was measured via 18FDG-PET imaging.Results: Physiological and molecular analyses demonstrated that centrally expressed human BACE1 induced systemic glucose intolerance in mice from 4 months of age onward, alongside a fatty liver phenotype and impaired hepatic glycogen storage. This diabetic phenotype was associated with hypothalamic pathology, i.e. deregulation of the melanocortin system, and advanced endoplasmic reticulum (ER) stress indicated by elevated central C/EBP homologous protein (CHOP) signalling and hyperphosphorylation of its regulator eukaryotic translation initiation factor 2α (eIF2α). In vivo 18FDG-PET imaging further confirmed brain glucose hypometabolism in these mice; this corresponded with altered neuronal insulin-related signalling, enhanced protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4) levels, along with upregulation of the ribosomal protein and lipid translation machinery. Increased forebrain and plasma lipid accumulation (i.e. ceramides, triacylglycerols, phospholipids) was identified via lipidomics analysis.Conclusions/interpretation: Our data reveal that neuronal BACE1 is a key regulator of metabolic homeostasis and provide a potential mechanism for the high prevalence of metabolic disturbance in Alzheimer’s disease.</p

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Port Curtis seagrass monitoring programme : [for] Southern Pacific Petroleum (Management) Surveys : 2000-2002

    No full text
    The monitroring programme is specificallydirected towards establishing and monitoring seagrass health parameters at seven sampling stations in four intertidal seagrass beds in Port Curtis (Friend Point, Flying Fox Creek, Worthington Island and Black Swan Creek)

    Retinoic Acid and Affective Disorders

    No full text

    Port Curtis seagrass monitoring programme : [for] Southern Pacific Petroleum (Management) Surveys : 2000-2001

    No full text
    This report presents results and principal findings from spatial and temporal analysis of data collected during annual surveys of four intertidal seagrass beds in Port Curtis during November 2000 and September 2001
    corecore