17 research outputs found

    A nano-luciferase expressing human coronavirus OC43 for countermeasure development

    Get PDF
    The genetic diversity of the coronavirus (CoV) family poses a significant challenge for drug discovery and development. Traditional antiviral drugs often target specific viral proteins from specific viruses which limits their use, especially against novel emerging viruses. Antivirals with broad-spectrum activity overcome this limitation by targeting highly conserved regions or catalytic domains within viral proteins that are essential for replication. For rapid identification of small molecules with broad antiviral activity, assays with viruses representing family-wide genetic diversity are needed. Viruses engineered to express a reporter gene (i.e. luminescence, fluorescence, etc.) can increase the efficiency, sensitivity or precision of drug screening over classical measures of replication like observation of cytopathic effect or measurement of infectious titers. We have previously developed reporter virus systems for multiple other endemic, pandemic, epidemic and enzootic CoV. Human CoV OC43 (HCoV-OC43) is a human endemic CoV that causes respiratory infection with age-related exacerbations of pathogenesis. Here, we describe the development of a novel recombinant HCoV-OC43 reporter virus that expresses nano-luciferase (HCoV-OC43 nLuc), and its potential application for screening of antivirals against CoV

    Critical ace2 determinants of sars-cov-2 and group 2b coronavirus infection and replication

    Get PDF
    The angiotensin-converting enzyme 2 (ACE2) receptor is a major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host range determinant, and understanding SARS-CoV-2-ACE2 interactions will provide important insights into COVID-19 pathogenesis and animal model development. SARS-CoV-2 cannot infect mice due to incompatibility between its receptor binding domain and the murine ACE2 receptor. Through molecular modeling and empirical in vitro validation, we identified 5 key amino acid differences between murine and human ACE2 that mediate SARS-CoV-2 infection, generating a chimeric humanized murine ACE2. Additionally, we examined the ability of the humanized murine ACE2 receptor to permit infection by an additional preemergent group 2B coronavirus, WIV-1, providing evidence for the potential pan-virus capabilities of this chimeric receptor. Finally, we predicted the ability of these determinants to inform host range identification of preemergent coronaviruses by evaluating hot spot contacts between SARS-CoV-2 and additional potential host receptors. Our results identify residue determinants that mediate coronavirus receptor usage and host range for application in SARS-CoV-2 and emerging coronavirus animal model development. IMPORTANCE SARS-CoV-2 (the causative agent of COVID-19) is a major public health threat and one of two related coronaviruses that have caused epidemics in modern history. A method of screening potential infectible hosts for preemergent and future emergent coronaviruses would aid in mounting rapid response and intervention strategies during future emergence events. Here, we evaluated determinants of SARS-CoV-2 receptor interactions, identifying key changes that enable or prevent infection. The analysis detailed in this study will aid in the development of model systems to screen emergent coronaviruses as well as treatments to counteract infections

    Transmission of viral pathogens in a social network of university students: the eX-FLU study

    Get PDF
    Previous research on respiratory infection transmission among university students has primarily focused on influenza. In this study, we explore potential transmission events for multiple respiratory pathogens in a social contact network of university students. University students residing in on-campus housing (n = 590) were followed for the development of influenza-like illness for 10-weeks during the 2012–13 influenza season. A contact network was built using weekly self-reported contacts, class schedules, and housing information. We considered a transmission event to have occurred if students were positive for the same pathogen and had a network connection within a 14-day period. Transmitters were individuals who had onset date prior to their infected social contact. Throat and nasal samples were analysed for multiple viruses by RT-PCR. Five viruses were involved in 18 transmission events (influenza A, parainfluenza virus 3, rhinovirus, coronavirus NL63, respiratory syncytial virus). Transmitters had higher numbers of co-infections (67%). Identified transmission events had contacts reported in small classes (33%), dormitory common areas (22%) and dormitory rooms (17%). These results suggest that targeting person-to-person interactions, through measures such as isolation and quarantine, could reduce transmission of respiratory infections on campus

    Divergent pathogenetic outcomes in BALB/c mice following Omicron subvariant infection

    Get PDF
    Following the emergence of B.1.1.529 Omicron, the SARS-CoV-2 virus evolved into a significant number of sublineage variants that possessed numerous mutations throughout the genome, but particularly within the spike glycoprotein (S) gene. For example, the BQ.1.1 and the XBB.1 and XBB.1.5 subvariants contained 34 and 41 mutations in S, respectively. However, these variants elicited largely replication only or mild disease phenotypes in mice. To better model pathogenic outcomes and measure countermeasure performance, we developed mouse adapted versions (BQ.1.1 MA; XBB.1 MA; XBB.1.5 MA) that reflect more pathogenic acute phase pulmonary disease symptoms of SARS-CoV-2, as well as derivative strains expressing nano-luciferase (nLuc) in place of ORF7 (BQ.1.1 nLuc; XBB.1 nLuc; XBB.1.5 nLuc). Amongst the mouse adapted (MA) viruses, a wide range of disease outcomes were observed including mortality, weight loss, lung dysfunction, and tissue viral loads in the lung and nasal turbinates. Intriguingly, XBB.1 MA and XBB.1.5 MA strains, which contained identical mutations throughout except at position F486S/P in S, exhibited divergent disease outcomes in mice (Ao et al., 2023). XBB.1.5 MA infection was associated with significant weight loss and ∼45 % mortality across two independent studies, while XBB.1 MA infected animals suffered from mild weight loss and only 10 % mortality across the same two independent studies. Additionally, the development and use of nanoluciferase expressing strains provided moderate throughput for live virus neutralization assays. The availability of small animal models for the assessment of Omicron VOC disease potential will enable refined capacity to evaluate the efficacy of on market and pre-clinical therapeutics and interventions

    Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy

    Get PDF
    Monoclonal antibodies with neutralizing activity against SARS-CoV-2 have demonstrated clinical benefits in cases of mild-to-moderate SARS-CoV-2 infection, substantially reducing the risk for hospitalization and severe disease1–4. Treatment generally requires the administration of high doses of these monoclonal antibodies and has limited efficacy in preventing disease complications or mortality among hospitalized patients with COVID-195. Here we report the development and evaluation of anti-SARS-CoV-2 monoclonal antibodies with optimized Fc domains that show superior potency for prevention or treatment of COVID-19. Using several animal disease models of COVID-196,7, we demonstrate that selective engagement of activating Fcγ receptors results in improved efficacy in both preventing and treating disease-induced weight loss and mortality, significantly reducing the dose required to confer full protection against SARS-CoV-2 challenge and for treatment of pre-infected animals. Our results highlight the importance of Fcγ receptor pathways in driving antibody-mediated antiviral immunity and exclude the possibility of pathogenic or disease-enhancing effects of Fcγ receptor engagement of anti-SARS-CoV-2 antibodies upon infection. These findings have important implications for the development of Fc-engineered monoclonal antibodies with optimal Fc-effector function and improved clinical efficacy against COVID-19 disease

    COVID-19: From epidemiology to treatment

    Get PDF
    The COVID-19 pandemic has greatly impacted the daily clinical practice of cardiologists and cardiovascular surgeons. Preparedness of health workers and health services is crucial to tackle the enormous challenge posed by SARS-CoV-2 in wards, operating theatres, intensive care units, and interventionist laboratories. This Clinical Review provides an overview of COVID-19 and focuses on relevant aspects on prevention and management for specialists within the cardiovascular field

    Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid

    Get PDF
    We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2

    Programmable antivirals targeting critical conserved viral RNA secondary structures from influenza A virus and SARS-CoV-2

    Get PDF
    Influenza A virus’s (IAV’s) frequent genetic changes challenge vaccine strategies and engender resistance to current drugs. We sought to identify conserved and essential RNA secondary structures within IAV’s genome that are predicted to have greater constraints on mutation in response to therapeutic targeting. We identified and genetically validated an RNA structure (packaging stem–loop 2 (PSL2)) that mediates in vitro packaging and in vivo disease and is conserved across all known IAV isolates. A PSL2-targeting locked nucleic acid (LNA), administered 3 d after, or 14 d before, a lethal IAV inoculum provided 100% survival in mice, led to the development of strong immunity to rechallenge with a tenfold lethal inoculum, evaded attempts to select for resistance and retained full potency against neuraminidase inhibitor-resistant virus. Use of an analogous approach to target SARS-CoV-2, prophylactic administration of LNAs specific for highly conserved RNA structures in the viral genome, protected hamsters from efficient transmission of the SARS-CoV-2 USA_WA1/2020 variant. These findings highlight the potential applicability of this approach to any virus of interest via a process we term ‘programmable antivirals’, with implications for antiviral prophylaxis and post-exposure therapy

    Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo

    Get PDF
    SARS-CoV-2, the causative agent of COVID-19, has been responsible for over 42 million infections and 1 million deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here, we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a Syrian hamster model of SARS-CoV-2 and in a mouse-adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). Antibody combinations were effective for prevention and in therapy when administered early. However, in vitro antibody neutralization potency did not uniformly correlate with in vivo protection, and some hu-mAbs were more protective in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors contributes to optimal protection against SARS-CoV-2 MA. The data indicate that intact effector function can affect hu-mAb protective activity and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention

    A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures

    Get PDF
    Coronaviruses are prone to emergence into new host species most recently evidenced by SARS-CoV-2, the causative agent of the COVID-19 pandemic1. Small animal models that recapitulate SARS-CoV-2 disease are desperately needed to rapidly evaluate medical countermeasures (MCMs)2,3. SARS-CoV-2 cannot infect wildtype laboratory mice due to inefficient interactions between the viral spike (S) protein and the murine ortholog of the human receptor, ACE24. We used reverse genetics5 to remodel the interaction between S and mACE2 resulting in a recombinant virus (SARS-CoV-2 MA) that could utilize mACE2 for entry. SARS-CoV-2 MA replicated in both the upper and lower airways of both young adult and aged BALB/c mice. Importantly, disease was more severe in aged mice, and showed more clinically relevant phenotypes than those seen in HFH4-hACE2 transgenic mice. We then demonstrated the utility of this model through vaccine challenge studies in immune competent mice with native expression of mACE2. Lastly, we show that clinical candidate interferon (IFN) lambda-1a can potently inhibit SARS-CoV-2 replication in primary human airway epithelial cells in vitro, and both prophylactic and therapeutic administration diminished replication in mice. Our mouse-adapted SARS-CoV-2 model demonstrates age-related disease pathogenesis and supports the clinical use of pegylated IFN lambda-1a treatment in human COVID-19 infections
    corecore