455 research outputs found

    Sustainable risk management of emerging contaminants in municipal wastewaters

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.The presence of emerging contaminants in municipal wastewaters, particularly endocrine-disrupting compounds such as oestrogenic substances, has been the focus of much public concern and scientific attention in recent years. Due to the scientific uncertainty still surrounding their effects, the Precautionary Principle could be invoked for the interim management of potential risks. Therefore, precautionary prevention risk-management measures could be employed to reduce human exposure to the compounds of concern. Steroid oestrogens are generally recognized as the most significant oestrogenically active substances in domestic sewage effluent. As a result, the UK Environment Agency has championed a ‘Demonstration Programme’ to investigate the potential for removal of steroid oestrogens and alkylphenol ethoxylates during sewage treatment. Ecological and human health risks are interdependent, and ecological injuries may result in increased human exposures to contaminants or other stressors. In this context of limiting exposure to potential contaminants, examining the relative contribution of various compounds and pathways should be taken into account when identifying effective risk-management measures. In addition, the explicit use of ecological objectives within the scope of the implementation of the EU Water Framework Directive poses new challenges and necessitates the development of ecosystem-based decision tools. This paper addresses some of these issues and proposes a species sensitivity distribution approach to support the decision-making process related to the need and implications of sewage treatment work upgrade as risk-management measures to the presence of oestrogenic compounds in sewage effluent

    Pilot Study of the Effects of Tai Chi on Elderly Fall Risks

    Get PDF
    Introduction. Falls in the elderly are a significant public health concern. Tai Chi has been shown to reduce falls in this population and increase muscle strength, balance, mood, confidence and sleep.https://scholarworks.uvm.edu/comphp_gallery/1087/thumbnail.jp

    Timing of HIV Seroreversion Among HIV-Exposed, Breastfed Infants in Malawi: Type of HIV Rapid Test Matters

    Get PDF
    Introduction Rapid HIV serological tests are a cost-effective, point-of-care test among HIV exposed infants but cannot distinguish between maternal and infant antibodies. The lack of data on the timing of decay of maternal antibodies in young infants hinders the potential use of rapid tests in exposed infants. We aimed to determine the time to seroreversion for two commonly used rapid tests in a prospective cohort of HIV-exposed breastfeeding infants ages 3-18 months of life. Methods We collected data on the performance of two commonly used rapid tests (Determine and Unigold) in Malawi between 2008 and 2012 or at the University of North Carolina between 2014 and 2015. Time to seroreversion was estimated for both rapid tests using the Kaplan-Meier product limit estimator which allows for interval censored data. Results At 3 months of age, 3 % of infants had seroreverted according to Determine and 7 % had seroreverted according to Unigold. About one in four infants had achieved seroreversion by 4 months using Unigold, but only about one in twelve infants by 4 months when using Determine. More than 95 % of all infants had seroverted by 7 months according to Unigold and by 12 months according to the Determine assay. Discussion We show that the time of seroreversion depends greatly on the type of test used. Our results highlight the need for recommendations to specify the timing and type of test used in the context of infant HIV detection in resource-poor settings, and base the interpretation of test result on knowledge of time to seroreversion of the selected test

    Immunomagnetic t-lymphocyte depletion (ITLD) of rat bone marrow using OX-19 monoclonal antibody

    Get PDF
    Graft versus host disease (GVHD) may be abrogated and host survival prolonged by in vitro depletion of T lymphocytes from bone marrow (BM) prior to allotransplantation. Using a mouse anti-rat pan T-lymphocyte monoclonal antibody (0×19) bound to monosized, magnetic, polymer beads, T lymphocytes were removed in vitro from normal bone marrow. The removal of the T lymphocytes was confirmed by flow cytometry. Injection of the T-lymphocyte-depleted bone marrow into fully allogeneic rats prevents the induction of GVHD and prolongs host survival. A highly efficient technique of T-lymphocyte depletion using rat bone marrow is described. It involves the binding of OX-19, a MoAb directed against all rat thy-mocytes and mature peripheral T lymphocytes, to monosized, magnetic polymer spheres. Magnetic separation of T lymphocytes after mixing the allogeneic bone marrow with the bead/OX-19 complex provides for a simple, rapid depletion of T lymphocytes from the bone marrow. In vitro studies using flow cytometry and the prevention of GVHD in a fully allogeneic rat bone marrow model have been used to demonstrate the effectiveness of the depletion procedure. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    First experience in human beings with a permanently implantable intrasac pressure transducer for monitoring endovascular repair of abdominal aortic aneurysms

    Get PDF
    ObjectivesEndovascular stent graft repair of abdominal aortic aneurysms (AAAs) prevents rupture by excluding the aneurysm sac from systemic arterial pressure. Current surveillance protocols after endovascular aneurysm repair (EVAR) follow secondary markers of sac pressurization, namely, endoleak and sac enlargement. We report the first clinical experience with the use of a permanently implantable, ultrasound-activated remote pressure transducer to measure intrasac pressure after EVAR.MethodsOver 7 months, 14 patients underwent EVAR of an infrarenal abdominal aortic aneurysm with implantation of an ultrasound-activated remote pressure transducer fixed to the outside of the stent graft and exposed to the excluded aortic sac. Twelve patients received modular bifurcated stent grafts, and 2 patients received aortouniiliac devices. Intrasac pressures were measured directly with an intravascular catheter and by the remote sensor at stent-graft deployment. Follow-up sac pressures were measured with a remote sensor and correlated with systemic arterial pressure at every follow-up visit. Mean follow-up was 2.6 ±1.9 months.ResultsExcellent concordance was found between catheter-derived and transducer-derived intrasac pressssure intraoperatively. Pulsatile waveforms were seen in all functioning transducers at each evaluation interval. One implant ceased to function at 2 months of follow-up. In 1 patient a type I endoleak was diagnosed on 1-month computed tomography (CT) scans; 3 type II endoleaks were observed. Those patients with complete exclusion of the aneurysm on CT scans had a significant difference in systemic and sac systolic pressures initially (P < .001) and at 1 month (P < .001). Initial sac diastolic pressures were higher than systemic diastolic pressures (P < .001). The ratio of systemic to sac systolic pressure increased over time in those patients with complete aneurysm exclusion (P < .001). Four of 6 patients with no endoleak and greater than 1-month follow-up had diminution of sac systolic pressure to 40 mm Hg or less by 3 months.ConclusionThis is the first report of a totally implantable chronic pressure transducer to monitor the results of EVAR in human beings. Aneurysm exclusion leads to gradual diminution of sac pressure over several months. Additional clinical follow-up will be necessary to determine whether aneurysm sac pressure monitoring can replace CT in the long-term surveillance of patients after EVAR

    Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus

    Get PDF
    Background. Severe acute respiratory syndrome (SARS) emerged as a human disease in 2002. Detailed phylogenetic analysis and epidemiologic studies have suggested that the SARS Coronavirus (SARS-CoV) originated from animals. The spike (S) glycoprotein has been identified as a major target of protective immunity and contains ≥3 regions that are targeted by neutralizing antibodies in the S1 and S2 domains. We previously characterized a panel of neutralizing human monoclonal antibodies (MAbs), but the majority of epitopes recognized by the MAbs remain unknown. Methods. In the present study, we generated neutralization escape mutants and studied the effect of these neutralization escape mutations on human and animal receptor usage as well as on in vitro and in vivo fitness. Results. Distinct but partially overlapping sets of amino acids were identified that are critical to the binding of MAbs with differential neutralization profiles. We also identified possible interactions between the S1 and S2 domains of the SARS-CoV S glycoprotein. Finally, we showed that escape from neutralization usually attenuates SARS-CoV infection. Conclusions. These data provide a mechanism for overcoming neutralization escape by use of broadly crossreactive cocktails of cross-neutralizing MAbs that recognize residues within the receptor-binding domain that are critical for virus replication and virulence

    SARS-like WIV1-CoV poised for human emergence

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV highlights the continued risk of cross-species transmission leading to epidemic disease. This manuscript describes efforts to extend surveillance beyond sequence analysis, constructing chimeric and full-length zoonotic coronaviruses to evaluate emergence potential. Focusing on SARS-like virus sequences isolated from Chinese horseshoe bats, the results indicate a significant threat posed by WIV1-CoV. Both full-length and chimeric WIV1-CoV readily replicated efficiently in human airway cultures and in vivo, suggesting capability of direct transmission to humans. In addition, while monoclonal antibody treatments prove effective, the SARS-based vaccine approach failed to confer protection. Together, the study indicates an ongoing threat posed by WIV1-related viruses and the need for continued study and surveillance

    A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradation and biotransformation, and when discharged can disrupt endocrine function in fish. These acidic metabolites represent the dominant alkylphenolic compounds found in wastewater effluent and their presence is cause for concern as, potentially, through further biotransformation and biodegradation, they can act as sources of nonylphenol, which is toxic and estrogenic. The authors aim to assess the mechanisms of formation as well as elimination of alkylphenoxyacetic acids within conventional sewage treatment works with the emphasis on the activated sludge process. In addition, they evaluate the various factors influencing their degradation and formation in laboratory scale and full-scale systems. The environmental implications of these compounds are considered, as is the need for tertiary treatment processes for their removal

    Unfolded Protein Response Inhibition Reduces Middle East Respiratory Syndrome Coronavirus-Induced Acute Lung Injury

    Get PDF
    Tissue- and cell-specific expression patterns are highly variable within and across individuals, leading to altered host responses after acute virus infection. Unraveling key tissue-specific response patterns provides novel opportunities for defining fundamental mechanisms of virus-host interaction in disease and the identification of critical tissue-specific networks for disease intervention in the lung. Currently, there are no approved therapeutics for Middle East respiratory syndrome coronavirus (MERS-CoV) patients, and little is understood about how lung cell types contribute to disease outcomes. MERS-CoV replicates equivalently in primary human lung microvascular endothelial cells (MVE) and fibroblasts (FB) and to equivalent peak titers but with slower replication kinetics in human airway epithelial cell cultures (HAE). However, only infected MVE demonstrate observable virus-induced cytopathic effect. To explore mechanisms leading to reduced MVE viability, donor-matched human lung MVE, HAE, and FB were infected, and their transcriptomes, proteomes, and lipidomes were monitored over time. Validated functional enrichment analysis demonstrated that MERS-CoV-infected MVE were dying via an unfolded protein response (UPR)-mediated apoptosis. Pharmacologic manipulation of the UPR in MERS-CoV-infected primary lung cells reduced viral titers and in male mice improved respiratory function with accompanying reductions in weight loss, pathological signatures of acute lung injury, and times to recovery. Systems biology analysis and validation studies of global kinetic transcript, protein, and lipid data sets confirmed that inhibition of host stress pathways that are differentially regulated following MERS-CoV infection of different tissue types can alleviate symptom progression to end-stage lung disease commonly seen following emerging coronavirus outbreaks. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe atypical pneumonia in infected individuals, but the underlying mechanisms of pathogenesis remain unknown. While much has been learned from the few reported autopsy cases, an in-depth understanding of the cells targeted by MERS-CoV in the human lung and their relative contribution to disease outcomes is needed. The host response in MERS-CoV-infected primary human lung microvascular endothelial (MVE) cells and fibroblasts (FB) was evaluated over time by analyzing total RNA, proteins, and lipids to determine the cellular pathways modulated postinfection. Findings revealed that MERS-CoV-infected MVE cells die via apoptotic mechanisms downstream of the unfolded protein response (UPR). Interruption of enzymatic processes within the UPR in MERS-CoV-infected male mice reduced disease symptoms, virus-induced lung injury, and time to recovery. These data suggest that the UPR plays an important role in MERS-CoV infection and may represent a host target for therapeutic intervention
    • …
    corecore