3,707 research outputs found

    An algorithm for optimal sizing of the capacitor banks under non-sinusoidal and unbalanced conditions

    Get PDF
    In non-sinusoidal and unbalanced systems, optimal sizing of the capacitor banks is not a straightforward task as in sinusoidal and balanced systems. In this paper, by means of qualitative and quantitative analysis, it is interpreted that the classical capacitor selection algorithm widely implemented in Reactive Power Control (RPC) relays does not achieve optimal power factor improvement in non-sinusoidal and unbalanced systems. Accordingly, a computationally efficient algorithm is proposed to find the optimal capacitor bank for smart RPC relays. It is further shown in a simulated test case by using Matlab software that the proposed algorithm provides better power factor improvement when compared with the classical algorithm. It is also figured out from the simulation results that both algorithms cause almost the same harmonic distortion and unbalance deterioration levels in the system

    A filter design approach to maximize ampacity of cables in nonsinusoidal power systems

    Get PDF
    This paper presents an optimal design of the C-type passive filters for the effective utilization of the power cables under nonsinusoidal conditions based on maximization of the harmonic derating factor (HDF) of a power cable, where maintaining the load true power factor at an acceptable range is desired. According to IEEE Standard 519, the total harmonic distortions of the voltage and current measured at the point of common coupling are taken into account as main constraints of the proposed approach. The presented numerical results show that the proposed approach provides higher current carrying capacity, or ampacity of the cables under nonsinusoidal conditions when compared to the traditional approaches based on minimization of the current total harmonic distortion and maximization of the true load power factor. A numerical case study is presented to demonstrate the proposed approach

    Neutrino masses and mixings

    Get PDF
    We propose a novel theoretical understanding of neutrino masses and mixings, which is attributed to the intrinsic vector-like feature of the regularized Standard Model at short distances. We try to explain the smallness of Dirac neutrino masses and the decoupling of the right-handed neutrino as a free particle. Neutrino masses and mixing angles are completely related to each other in the Schwinger-Dyson equations for their self-energy functions. The solutions to these equations and a possible pattern of masses and mixings are discussed.Comment: LaTex 11 page

    Optimal design of single-tuned passive filters using response surface methodology

    Get PDF
    This paper presents an approach based on Response Surface Methodology (RSM) to find the optimal parameters of the single-tuned passive filters for harmonic mitigation. The main advantages of RSM can be underlined as easy implementation and effective computation. Using RSM, the single-tuned harmonic filter is designed to minimize voltage total harmonic distortion (THDV) and current total harmonic distortion (THDI). Power factor (PF) is also incorporated in the design procedure as a constraint. To show the validity of the proposed approach, RSM and Classical Direct Search (Grid Search) methods are evaluated for a typical industrial power system

    Pacifying the Fermi-liquid: battling the devious fermion signs

    Full text link
    The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics are self consistently translated into a geometrical constraint structure (the {\em nodal hypersurface}) acting on an effective bosonic dynamics. As an illustrative example we use this formalism to study 1+1-dimensional systems, where statistics are irrelevant, and hence the sign problem can be circumvented. In this low-dimensional example, the structure of the nodal constraints leads to a lucid picture of the entropic interaction essential to one-dimensional physics. Working with the path integral in momentum space, we then show that the Fermi gas can be understood by analogy to a Mott insulator in a harmonic trap. Going back to real space, we discuss the topological properties of the nodal cells, and suggest a new holographic conjecture relating Fermi liquids in higher dimensions to soft-core bosons in one dimension. We also discuss some possible connections between mixed Bose/Fermi systems and supersymmetry.Comment: 28 pages, 5 figure

    Pretzelosity h1Th_{1T}^{\perp} and quark orbital angular momentum

    Full text link
    We calculate the pretzelosity distribution (h1Th_{1T}^{\perp}), which is one of the eight leading twist transverse momentum dependent parton distributions (TMDs), in the light-cone formalism. We find that this quantity has a simple relation with the quark orbital angular momentum distribution, thus it may provide a new possibility to access the quark orbital angular momentum inside the nucleon. The pretzelosity distribution can manifest itself through the sin(3ϕhϕS)\sin(3\phi_h-\phi_S) asymmetry in semi-inclusive deep inelastic scattering process. We calculate the sin(3ϕhϕS)\sin(3\phi_h-\phi_S) asymmetry at HERMES, COMPASS and JLab kinematics, and present our prediction on different targets including the proton, deuteron and neutron targets. Inclusion of transverse momentum cut in data analysis could significantly enhance the sin(3ϕhϕS)\sin(3\phi_h-\phi_S) asymmetry for future measurements.Comment: 20 latex pages, 7 figures, to appear in PR
    corecore