280 research outputs found

    Chandra Survey of Nearby Galaxies: A Significant Population of Candidate Central Black Holes in Late-type Galaxies

    Full text link
    Based on the Chandra data archive as of March 2016, we have identified 314 candidate active galactic nuclei in 719 galaxies located closer than 50 Mpc, among them late-type (Hubble types Sc and later) galaxies that previously had been classified from optical observations as containing star-forming (H II) nuclei. These late-type galaxies comprise a valuable subsample to search for low-mass (<~ 10^6 solar masses) central black holes. For the sample as a whole, the overall dependence of the fraction of active nuclei on galaxy type and nuclear spectral classification is consistent with previous results based on optical surveys. We detect 51 X-ray cores among the 163 H II nuclei and estimate that, very conservatively, ~74% of them with luminosities above 10^38 erg/s are not contaminated by X-ray binaries; the fraction increases to ~92% for X-ray cores with a luminosity of 10^39 erg/s or higher. This allows us to estimate a black hole occupation fraction of >~ 21% in these late-type, many bulgeless, galaxies.Comment: ApJ to appea

    Chandra Survey of Nearby Galaxies: The Catalog

    Full text link
    We searched in the public archive of the Chandra X-ray Observatory as of March 2016 and assembled a sample of 719 galaxies within 50 Mpc with ACIS observations available. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H II nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 10^37 erg/s on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.Comment: Accepted for publication in the Astrophysical Journa

    Matching Users' Preference Under Target Revenue Constraints in Optimal Data Recommendation Systems

    Full text link
    This paper focuses on the problem of finding a particular data recommendation strategy based on the user preferences and a system expected revenue. To this end, we formulate this problem as an optimization by designing the recommendation mechanism as close to the user behavior as possible with a certain revenue constraint. In fact, the optimal recommendation distribution is the one that is the closest to the utility distribution in the sense of relative entropy and satisfies expected revenue. We show that the optimal recommendation distribution follows the same form as the message importance measure (MIM) if the target revenue is reasonable, i.e., neither too small nor too large. Therefore, the optimal recommendation distribution can be regarded as the normalized MIM, where the parameter, called importance coefficient, presents the concern of the system and switches the attention of the system over data sets with different occurring probability. By adjusting the importance coefficient, our MIM based framework of data recommendation can then be applied to system with various system requirements and data distributions.Therefore,the obtained results illustrate the physical meaning of MIM from the data recommendation perspective and validate the rationality of MIM in one aspect.Comment: 36 pages, 6 figure
    • …
    corecore