2,497 research outputs found
Predicting Allograft Requirement in the Management of Patients With Major Burn Injuries
• Early debridement and coverage of burn wounds saves lives.
• Allograft is the ‘gold-standard’ for temporary coverage of acute burns
Simultaneous lidar and airglow temperature measurements in the mesopause region
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94970/1/grl5512.pd
Universal statistics of non-linear energy transfer in turbulent models
A class of shell models for turbulent energy transfer at varying the
inter-shell separation, , is investigated. Intermittent corrections in
the continuous limit of infinitely close shells () have
been measured. Although the model becomes, in this limit, non-intermittent, we
found universal aspects of the velocity statistics which can be interpreted in
the framework of log-poisson distributions, as proposed by She and Waymire
(1995, Phys. Rev. Lett. 74, 262). We suggest that non-universal aspects of
intermittency can be adsorbed in the parameters describing statistics and
properties of the most singular structure. On the other hand, universal aspects
can be found by looking at corrections to the monofractal scaling of the most
singular structure. Connections with similar results reported in other shell
models investigations and in real turbulent flows are discussed.Comment: 4 pages, 2 figures available upon request to [email protected]
Concurrent OH imager and sodiumtemperature/wind lidar observation of a mesopause region undular bore event over Fort Collins/Platteville, CO
We reported the observation of a mesospheric front with the properties of an undular bore by an OH imager, over the Fort Collins/Platteville area on 6/7 October 2002. Unlike the earlier bore observations, a Na lidar capable of measuring mesopause region temperature, zonal, and meridional winds was in operation concurrently. The lidar data confirm, for the first time, the existence of a collocated temperature inversion layer to serve as the ducting region for bore propagation, as required by the simple theory proposed by Dewan and Picard 6 years ago. In addition, the lidar data in principle provide sufficient information for the determination of all parameters of the bore as suggested by the simple theory. The parameters so determined are compared to two bores previously studied. Like the earlier cases, the horizontal wavelength estimated from the theory is in good agreement with the observation. The lifetime of this undular bore, ∼120 min, was considerably shorter than the other two. Continued lidar observation after the bore event reveals that the ducting region may be controlled by a long-period wave, most likely related to a semidiurnal tide, and that atmospheric dynamic instability occurs simultaneously with the destruction of the wave train associated with the bore. It is possible that this constitutes, for the first time, the observation of the transition from an undular to a turbulent, or foaming, internal bore predicted by the theory
Developed turbulence: From full simulations to full mode reductions
Developed Navier-Stokes turbulence is simulated with varying wavevector mode
reductions. The flatness and the skewness of the velocity derivative depend on
the degree of mode reduction. They show a crossover towards the value of the
full numerical simulation when the viscous subrange starts to be resolved. The
intermittency corrections of the scaling exponents of the pth order velocity
structure functions seem to depend mainly on the proper resolution of the
inertial subrange. Universal scaling properties (i.e., independent of the
degree of mode reduction) are found for the relative scaling exponents rho
which were recently defined by Benzi et al.Comment: 4 pages, 5 eps-figures, replaces version from August 5th, 199
Supersonic turbulence and structure of interstellar molecular clouds
The interstellar medium (ISM) provides a unique laboratory for highly
supersonic, driven hydrodynamics turbulence. We present a theory of such
turbulence, confirm it by numerical simulations, and use the results to explain
observational properties of interstellar molecular clouds, the regions where
stars are born.Comment: 5 pages, 3 figures include
Universality in fully developed turbulence
We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70,
3251 (1993)] of highly turbulent flow with Taylor-Reynolds number
up to , employing a reduced wave
vector set method (introduced earlier) to approximately solve the Navier-Stokes
equation. First, also for these extremely high Reynolds numbers ,
the energy spectra as well as the higher moments -- when scaled by the spectral
intensity at the wave number of peak dissipation -- can be described by
{\it one universal} function of for all . Second, the ISR
scaling exponents of this universal function are in agreement with
the 1941 Kolmogorov theory (the better, the large is), as is the
dependence of . Only around viscous damping leads to
slight energy pileup in the spectra, as in the experimental data (bottleneck
phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys.
Rev.
Accelerating universe emergent from the landscape
We propose that the existence of the string landscape suggests the universe
can be in a quantum glass state, where an extremely large viscosity is
generated, and long distance dynamics slows down. At the same time, the short
distance dynamics is not altered due to the separation of time scales. This
scenario can help to understand some controversies in cosmology, for example
the natural existence of slow roll inflation and dark energy in the landscape,
the apparent smallness of the cosmological constant. We see also that moduli
stabilization is no longer necessary. We further identify the glass transition
point, where the viscosity diverges, as the location of the cosmic horizon. We
try to reconstruct the geometry of the accelerating universe from the structure
of the landscape, and find that the metric should have an infinite jump when
crossing the horizon. We predict that the static coordinate metric for dS space
breaks down outside the horizon.Comment: 20 pages, no figures, harvma
Finite size corrections to scaling in high Reynolds number turbulence
We study analytically and numerically the corrections to scaling in
turbulence which arise due to the finite ratio of the outer scale of
turbulence to the viscous scale , i.e., they are due to finite size
effects as anisotropic forcing or boundary conditions at large scales. We find
that the deviations \dzm from the classical Kolmogorov scaling of the velocity moments \langle |\u(\k)|^m\rangle \propto k^{-\zeta_m}
decrease like . Our numerics employ a
reduced wave vector set approximation for which the small scale structures are
not fully resolved. Within this approximation we do not find independent
anomalous scaling within the inertial subrange. If anomalous scaling in the
inertial subrange can be verified in the large limit, this supports the
suggestion that small scale structures should be responsible, originating from
viscosity either in the bulk (vortex tubes or sheets) or from the boundary
layers (plumes or swirls)
- …