26 research outputs found

    Two body problem on two point homogeneous spaces, invariant differential operators and the mass center concept

    Full text link
    We consider the two body problem with central interaction on two point homogeneous spaces from point of view of the invariant differential operators theory. The representation of the two particle Hamiltonian in terms of the radial differential operator and invariant operators on the symmetry group is found. The connection of different mass center definitions for these spaces to the obtained expression for Hamiltonian operator is studied.Comment: 26 pages, LaTeX, no figures, text improve

    Nonintegrability of the two-body problem in constant curvature spaces

    Full text link
    We consider the reduced two-body problem with the Newton and the oscillator potentials on the sphere S2{\bf S}^{2} and the hyperbolic plane H2{\bf H}^{2}. For both types of interaction we prove the nonexistence of an additional meromorphic integral for the complexified dynamic systems.Comment: 20 pages, typos correcte

    Two-body quantum mechanical problem on spheres

    Full text link
    The quantum mechanical two-body problem with a central interaction on the sphere Sn{\bf S}^{n} is considered. Using recent results in representation theory an ordinary differential equation for some energy levels is found. For several interactive potentials these energy levels are calculated in explicit form.Comment: 41 pages, no figures, typos corrected; appendix D was adde

    The geometric sense of R. Sasaki connection

    Full text link
    For the Riemannian manifold MnM^{n} two special connections on the sum of the tangent bundle TMnTM^{n} and the trivial one-dimensional bundle are constructed. These connections are flat if and only if the space MnM^{n} has a constant sectional curvature ±1\pm 1. The geometric explanation of this property is given. This construction gives a coordinate free many-dimensional generalization of the connection from the paper: R. Sasaki 1979 Soliton equations and pseudospherical surfaces, Nuclear Phys., {\bf 154 B}, pp. 343-357. It is shown that these connections are in close relation with the imbedding of MnM^{n} into Euclidean or pseudoeuclidean (n+1)(n+1)-dimension spaces.Comment: 7 pages, the key reference to the paper of Min-Oo is included in the second versio

    Hidden symmetry of hyperbolic monopole motion

    Get PDF
    Hyperbolic monopole motion is studied for well separated monopoles. It is shown that the motion of a hyperbolic monopole in the presence of one or more fixed monopoles is equivalent to geodesic motion on a particular submanifold of the full moduli space. The metric on this submanifold is found to be a generalisation of the multi-centre Taub-NUT metric introduced by LeBrun. The one centre case is analysed in detail as a special case of a class of systems admitting a conserved Runge-Lenz vector. The two centre problem is also considered. An integrable classical string motion is exhibited.Comment: 39 pages, 7 figures, references added, minor changes to section

    On the stability of tetrahedral relative equilibria in the positively curved 4-body problem

    Full text link
    We consider the motion of point masses given by a natural extension of Newtonian gravitation to spaces of constant positive curvature. Our goal is to explore the spectral stability of tetrahedral orbits of the corresponding 4-body problem in the 2-dimensional case, a situation that can be reduced to studying the motion of the bodies on the unit sphere. We first perform some extensive and highly precise numerical experiments to find the likely regions of stability and instability, relative to the values of the masses and to the latitude of the position of three equal masses. Then we support the numerical evidence with rigorous analytic proofs in the vicinity of some limit cases in which certain masses are either very large or negligible, or the latitude is close to zero.Comment: 32 pages, 6 figure

    Superintegrable potentials on 3D Riemannian and Lorentzian spaces with non-constant curvature

    Full text link
    A quantum sl(2,R) coalgebra is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the non-constant curvature analogues of the spherical, hyperbolic and (anti-)de Sitter spaces. The connection and curvature tensors for these "deformed" spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map leading to a spherical-type phase space. In this framework, the non-deformed limit is identified with the flat contraction leading to the Euclidean and Minkowskian spaces/potentials. The resulting Hamiltonians always admit, at least, three functionally independent constants of motion coming from the coalgebra structure. Furthermore, the intrinsic oscillator and Kepler potentials on such Riemannian and Lorentzian spaces of non-constant curvature are identified, and several examples of them are explicitly presented.Comment: 14 pages. Based in the contribution presented at the Group 27 conference, Yerevan, Armenia, August 13-19, 200
    corecore