5 research outputs found

    Applications of dielectric pads, novel materials and resonators in 1.5T and 3T MRI

    No full text
    \u3cp\u3eIn order to boost the performance of magnetic resonance imaging without increasing the static magnetic field, it is necessary to increase its intrinsic sensitivity. This allows a reduction in the scanning time, increased spatial resolution, and can enable low-field strength systems (which are much cheaper and can be used to scan patients with metallic implants) to have a higher signal-to-noise ratio (SNR) so that they are comparable to more expensive higher field strength systems. In this contribution, we demonstrate radiofrequency field enhancing and shaping devices based on novel materials, such as high permittivity dielectric structures and metamaterials. These materials can substantially enhance SNR, thus potentially increasing image resolution or allowing faster examinations.\u3c/p\u3

    Volumetric wireless coil based on periodically coupled split-loop resonators for clinical wrist imaging

    No full text
    PURPOSE: Design and characterization of a new inductively driven wireless coil (WLC) for wrist imaging at 1.5 T with high homogeneity operating due to focusing the B1 field of a birdcage body coil. METHODS: The WLC design has been proposed based on a volumetric self-resonant periodic structure of inductively coupled split-loop resonators with structural capacitance. The WLC was optimized and studied regarding radiofrequency fields and interaction to the birdcage coil (BC) by electromagnetic simulations. The manufactured WLC was characterized by on-bench measurements and in vivo and phantom study in comparison to a standard cable-connected receive-only coil. RESULTS: The WLC placed into BC gave the measured B1+ increase of the latter by 8.6 times for the same accepted power. The phantom and in vivo wrist imaging showed that the BC in receiving with the WLC inside reached equal or higher signal-to-noise ratio than the conventional clinical setup comprising the transmit-only BC and a commercial receive-only flex-coil and created no artifacts. Simulations and on-bench measurements proved safety in terms of specific absorption rate and reflected transmit power. CONCLUSIONS: The results showed that the proposed WLC could be an alternative to standard cable-connected receive coils in clinical magnetic resonance imaging. As an example, with no cable connection, the WLC allowed wrist imaging on a 1.5 T clinical machine using a full-body BC for transmitting and receive with the desired signal-to-noise ratio, image quality, and safety
    corecore