4 research outputs found

    Effectiveness of Transformer Models on IoT Security Detection in StackOverflow Discussions

    Full text link
    The Internet of Things (IoT) is an emerging concept that directly links to the billions of physical items, or "things", that are connected to the Internet and are all gathering and exchanging information between devices and systems. However, IoT devices were not built with security in mind, which might lead to security vulnerabilities in a multi-device system. Traditionally, we investigated IoT issues by polling IoT developers and specialists. This technique, however, is not scalable since surveying all IoT developers is not feasible. Another way to look into IoT issues is to look at IoT developer discussions on major online development forums like Stack Overflow (SO). However, finding discussions that are relevant to IoT issues is challenging since they are frequently not categorized with IoT-related terms. In this paper, we present the "IoT Security Dataset", a domain-specific dataset of 7147 samples focused solely on IoT security discussions. As there are no automated tools to label these samples, we manually labeled them. We further employed multiple transformer models to automatically detect security discussions. Through rigorous investigations, we found that IoT security discussions are different and more complex than traditional security discussions. We demonstrated a considerable performance loss (up to 44%) of transformer models on cross-domain datasets when we transferred knowledge from a general-purpose dataset "Opiner", supporting our claim. Thus, we built a domain-specific IoT security detector with an F1-Score of 0.69. We have made the dataset public in the hope that developers would learn more about the security discussion and vendors would enhance their concerns about product security

    An Interpretable Systematic Review of Machine Learning Models for Predictive Maintenance of Aircraft Engine

    Full text link
    This paper presents an interpretable review of various machine learning and deep learning models to predict the maintenance of aircraft engine to avoid any kind of disaster. One of the advantages of the strategy is that it can work with modest datasets. In this study, sensor data is utilized to predict aircraft engine failure within a predetermined number of cycles using LSTM, Bi-LSTM, RNN, Bi-RNN GRU, Random Forest, KNN, Naive Bayes, and Gradient Boosting. We explain how deep learning and machine learning can be used to generate predictions in predictive maintenance using a straightforward scenario with just one data source. We applied lime to the models to help us understand why machine learning models did not perform well than deep learning models. An extensive analysis of the model's behavior is presented for several test data to understand the black box scenario of the models. A lucrative accuracy of 97.8%, 97.14%, and 96.42% are achieved by GRU, Bi-LSTM, and LSTM respectively which denotes the capability of the models to predict maintenance at an early stage

    Bengali Fake Review Detection using Semi-supervised Generative Adversarial Networks

    Full text link
    This paper investigates the potential of semi-supervised Generative Adversarial Networks (GANs) to fine-tune pretrained language models in order to classify Bengali fake reviews from real reviews with a few annotated data. With the rise of social media and e-commerce, the ability to detect fake or deceptive reviews is becoming increasingly important in order to protect consumers from being misled by false information. Any machine learning model will have trouble identifying a fake review, especially for a low resource language like Bengali. We have demonstrated that the proposed semi-supervised GAN-LM architecture (generative adversarial network on top of a pretrained language model) is a viable solution in classifying Bengali fake reviews as the experimental results suggest that even with only 1024 annotated samples, BanglaBERT with semi-supervised GAN (SSGAN) achieved an accuracy of 83.59% and a f1-score of 84.89% outperforming other pretrained language models - BanglaBERT generator, Bangla BERT Base and Bangla-Electra by almost 3%, 4% and 10% respectively in terms of accuracy. The experiments were conducted on a manually labeled food review dataset consisting of total 6014 real and fake reviews collected from various social media groups. Researchers that are experiencing difficulty recognizing not just fake reviews but other classification issues owing to a lack of labeled data may find a solution in our proposed methodology

    Rank Your Summaries: Enhancing Bengali Text Summarization via Ranking-based Approach

    Full text link
    With the increasing need for text summarization techniques that are both efficient and accurate, it becomes crucial to explore avenues that enhance the quality and precision of pre-trained models specifically tailored for summarizing Bengali texts. When it comes to text summarization tasks, there are numerous pre-trained transformer models at one's disposal. Consequently, it becomes quite a challenge to discern the most informative and relevant summary for a given text among the various options generated by these pre-trained summarization models. This paper aims to identify the most accurate and informative summary for a given text by utilizing a simple but effective ranking-based approach that compares the output of four different pre-trained Bengali text summarization models. The process begins by carrying out preprocessing of the input text that involves eliminating unnecessary elements such as special characters and punctuation marks. Next, we utilize four pre-trained summarization models to generate summaries, followed by applying a text ranking algorithm to identify the most suitable summary. Ultimately, the summary with the highest ranking score is chosen as the final one. To evaluate the effectiveness of this approach, the generated summaries are compared against human-annotated summaries using standard NLG metrics such as BLEU, ROUGE, BERTScore, WIL, WER, and METEOR. Experimental results suggest that by leveraging the strengths of each pre-trained transformer model and combining them using a ranking-based approach, our methodology significantly improves the accuracy and effectiveness of the Bengali text summarization.Comment: Accepted in International Conference on Big Data, IoT and Machine Learning 2023 (BIM 2023
    corecore