2,026 research outputs found

    Constant Rate Approximate Maximum Margin Algorithms

    Full text link
    We present a new class of perceptron-like algorithms with margin in which the “effective” learning rate, defined as the ratio of the learning rate to the length of the weight vector, remains constant. We prove that the new algorithms converge in a finite number of steps and show that there exists a limit of the parameters involved in which convergence leads to classification with maximum margin

    Estimating the moments of a random vector with applications

    Full text link
    A general result about the quality of approximation of the mean of a distribution by its empirical estimate is proven that does not involve the dimension of the feature space. Using the kernel trick this gives also bounds the quality of approximation of higher order moments. A number of applications are derived of interest in learning theory including a new novelty detection algorithm and rigorous bounds on the Robust Minimax Classification algorithm

    PAC-Bayes Analysis of Multi-view Learning

    Get PDF
    This paper presents eight PAC-Bayes bounds to analyze the generalization performance of multi-view classifiers. These bounds adopt data dependent Gaussian priors which emphasize classifiers with high view agreements. The center of the prior for the first two bounds is the origin, while the center of the prior for the third and fourth bounds is given by a data dependent vector. An important technique to obtain these bounds is two derived logarithmic determinant inequalities whose difference lies in whether the dimensionality of data is involved. The centers of the fifth and sixth bounds are calculated on a separate subset of the training set. The last two bounds use unlabeled data to represent view agreements and are thus applicable to semi-supervised multi-view learning. We evaluate all the presented multi-view PAC-Bayes bounds on benchmark data and compare them with previous single-view PAC-Bayes bounds. The usefulness and performance of the multi-view bounds are discussed.Comment: 35 page
    corecore