413 research outputs found
A New Solution of The Cosmological Constant Problems
We extend the usual gravitational action principle by promoting the bare
cosmological constant (CC) from a parameter to a field which can take many
possible values. Variation leads to a new integral constraint equation which
determines the classical value of the effective CC that dominates the wave
function of the universe. In a realistic cosmological model, the expected value
of the effective CC, is calculated from measurable quantities to be O(t_U), as
observed, where t_U is the present age of the universe in Planck units,. Any
application of our model produces a falsifiable prediction for in
terms of other measurable quantities. This leads to a specific falsifiable
prediction for the observed spatial curvature parameter of Omega_k0=-0.0055.
Our testable proposal requires no fine tunings or extra dark-energy fields but
does suggest a new view of time and cosmological evolution.Comment: 5 pages; v3: version accepted by Phys. Rev. Let
The Local Effects of Cosmological Variations in Physical 'Constants' and Scalar Fields I. Spherically Symmetric Spacetimes
We apply the method of matched asymptotic expansions to analyse whether
cosmological variations in physical `constants' and scalar fields are
detectable, locally, on the surface of local gravitationally bound systems such
as planets and stars, or inside virialised systems like galaxies and clusters.
We assume spherical symmetry and derive a sufficient condition for the local
time variation of the scalar fields that drive varying constants to track the
cosmological one. We calculate a number of specific examples in detail by
matching the Schwarzschild spacetime to spherically symmetric inhomogeneous
Tolman-Bondi metrics in an intermediate region by rigorously construction
matched asymptotic expansions on cosmological and local astronomical scales
which overlap in an intermediate domain. We conclude that, independent of the
details of the scalar-field theory describing the varying `constant', the
condition for cosmological variations to be measured locally is almost always
satisfied in physically realistic situations. The proof of this statement
provides a rigorous justification for using terrestrial experiments and solar
system observations to constrain or detect any cosmological time variations in
the traditional `constants' of Nature.Comment: 30 pages, 3 figures; corrected typo
Some Late-time Asymptotics of General Scalar-Tensor Cosmologies
We study the asymptotic behaviour of isotropic and homogeneous universes in
general scalar-tensor gravity theories containing a p=-rho vacuum fluid stress
and other sub-dominant matter stresses. It is shown that in order for there to
be approach to a de Sitter spacetime at large 4-volumes the coupling function,
omega(phi), which defines the scalar-tensor theory, must diverge faster than
|phi_infty-phi|^(-1+epsilon) for all epsilon>0 as phi rightarrow phi_infty 0
for large values of the time. Thus, for a given theory, specified by
omega(phi), there must exist some phi_infty in (0,infty) such that omega ->
infty and omega' / omega^(2+epsilon) -> 0 as phi -> 0 phi_infty in order for
cosmological solutions of the theory to approach de Sitter expansion at late
times. We also classify the possible asymptotic time variations of the
gravitation `constant' G(t) at late times in scalar-tensor theories. We show
that (unlike in general relativity) the problem of a profusion of ``Boltzmann
brains'' at late cosmological times can be avoided in scalar-tensor theories,
including Brans-Dicke theory, in which phi -> infty and omega ~ o(\phi^(1/2))
at asymptotically late times.Comment: 14 page
Observable Effects of Scalar Fields and Varying Constants
We show by using the method of matched asymptotic expansions that a
sufficient condition can be derived which determines when a local experiment
will detect the cosmological variation of a scalar field which is driving the
spacetime variation of a supposed constant of Nature. We extend our earlier
analyses of this problem by including the possibility that the local region is
undergoing collapse inside a virialised structure, like a galaxy or galaxy
cluster. We show by direct calculation that the sufficient condition is met to
high precision in our own local region and we can therefore legitimately use
local observations to place constraints upon the variation of "constants" of
Nature on cosmological scales.Comment: Invited Festscrift Articl
Evolution of the fine-structure constant in the non-linear regime
We study the evolution of the fine-structure constant, , induced by
non-linear density perturbations in the context of the simplest class of
quintessence models with a non-minimal coupling to the electromagnetic field,
in which the two available free functions (potential and gauge kinetic
function) are Taylor-expanded up to linear order. We show that the results
obtained using the spherical infall model for an infinite wavelength
inhomogeneity are inconsistent with the results of a local linearized gravity
study and we argue in favour of the second approach. We also discuss recent
claims that the value of inside virialised regions could be
significantly different from the background one on the basis of these findings.Comment: 5 pages, 3 figure
Varying Alpha: New Constraints from Seasonal Variations
We analyse the constraints obtained from new atomic clock data on the
possible time variation of the fine structure `constant' and the
electron-proton mass ratio and show how they are strengthened when the seasonal
variation of Sun's gravitational field at the Earth's surface is taken into
account. We compare these bounds with those obtainable from tests of the Weak
Equivalence Principle and high-redshift observations of quasar absorption
spectra consistent with time variations in the fine structure constant.Comment: 4 pages, 1 figur
- …