302 research outputs found
Coral restoration - A systematic review of current methods, successes, failures and future directions.
Coral reef ecosystems have suffered an unprecedented loss of habitat-forming hard corals in recent decades. While marine conservation has historically focused on passive habitat protection, demand for and interest in active restoration has been growing in recent decades. However, a disconnect between coral restoration practitioners, coral reef managers and scientists has resulted in a disjointed field where it is difficult to gain an overview of existing knowledge. To address this, we aimed to synthesise the available knowledge in a comprehensive global review of coral restoration methods, incorporating data from the peer-reviewed scientific literature, complemented with grey literature and through a survey of coral restoration practitioners. We found that coral restoration case studies are dominated by short-term projects, with 60% of all projects reporting less than 18 months of monitoring of the restored sites. Similarly, most projects are relatively small in spatial scale, with a median size of restored area of 100 m2. A diverse range of species are represented in the dataset, with 229 different species from 72 coral genera. Overall, coral restoration projects focused primarily on fast-growing branching corals (59% of studies), and report survival between 60 and 70%. To date, the relatively young field of coral restoration has been plagued by similar 'growing pains' as ecological restoration in other ecosystems. These include 1) a lack of clear and achievable objectives, 2) a lack of appropriate and standardised monitoring and reporting and, 3) poorly designed projects in relation to stated objectives. Mitigating these will be crucial to successfully scale up projects, and to retain public trust in restoration as a tool for resilience based management. Finally, while it is clear that practitioners have developed effective methods to successfully grow corals at small scales, it is critical not to view restoration as a replacement for meaningful action on climate change
Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response
Dramatic rise of mutators has been found to accompany adaptation of bacteria
in response to many kinds of stress. Two views on the evolutionary origin of
this phenomenon emerged: the pleiotropic hypothesis positing that it is a
byproduct of environmental stress or other specific stress response mechanisms
and the second order selection which states that mutators hitchhike to fixation
with unrelated beneficial alleles. Conventional population genetics models
could not fully resolve this controversy because they are based on certain
assumptions about fitness landscape. Here we address this problem using a
microscopic multiscale model, which couples physically realistic molecular
descriptions of proteins and their interactions with population genetics of
carrier organisms without assuming any a priori fitness landscape. We found
that both pleiotropy and second order selection play a crucial role at
different stages of adaptation: the supply of mutators is provided through
destabilization of error correction complexes or fluctuations of production
levels of prototypic mismatch repair proteins (pleiotropic effects), while rise
and fixation of mutators occur when there is a sufficient supply of beneficial
mutations in replication-controlling genes. This general mechanism assures a
robust and reliable adaptation of organisms to unforeseen challenges. This
study highlights physical principles underlying physical biological mechanisms
of stress response and adaptation
Asthma and gender impact accumulation of T cell subtypes
<p>Abstract</p> <p>Background</p> <p>The "Th2 hypothesis for asthma" asserts that an increased ratio of Th2:Th1 cytokine production plays an important pathogenic role in asthma. Although widely embraced, the hypothesis has been challenged by various empirical observations and has been described as overly simplistic. We sought to establish whether CD3+CD28-mediated and antigen-independent accumulation of type 1 and type 2 T cells differs significantly between nonasthmatic and asthmatic populations.</p> <p>Methods</p> <p>An ex vivo system was used to characterize the regulation of IFN-Îł-producing (type 1) and IL-13-producing (type 2) T cell accumulation in response to CD3+CD28 and IL-2 stimulation by flow cytometry.</p> <p>Results</p> <p>IL-13-producing T cells increased in greater numbers in response to antigen-independent stimulation in peripheral blood lymphocytes from female atopic asthmatic subjects compared with male asthmatics and both male and female atopic non-asthmatic subjects. IFN-Îł<sup>+ </sup>T cells increased in greater numbers in response to either antigen-independent or CD3+CD28-mediated stimulation in peripheral blood lymphocytes from atopic asthmatic subjects compared to non-asthmatic subjects, regardless of gender.</p> <p>Conclusions</p> <p>We demonstrate that T cells from asthmatics are programmed for increased accumulation of both type 2 and type 1 T cells. Gender had a profound effect on the regulation of type 2 T cells, thus providing a mechanism for the higher frequency of adult asthma in females.</p
Risk, balanced skills and entrepreneurship
This paper proposes that risk aversion encourages individuals to invest in balanced skill profiles, making them more likely to become entrepreneurs. By not taking this possible linkage into account, previous research has underestimated the impacts of both risk aversion and balanced skills on the likelihood individuals choose entrepreneurship. Data on Dutch university graduates provide an illustration supporting our contention. We raise the possibility that even risk-averse people might be suited to entrepreneurship; and it may also help explain why prior research has generated somewhat mixed evidence about the effects of risk aversion on selection into entrepreneurship
Historical Research Approaches to the Analysis of Internationalisation
Historical research methods and approaches can improve understanding of the most appropriate techniques to confront data and test theories in internationalisation research. A critical analysis of all âtextsâ (sources), time series analyses, comparative methods across time periods and space, counterfactual analysis and the examination of outliers are shown to have the potential to improve research practices. Examples and applications are shown in these key areas of research with special reference to internationalisation processes. Examination of these methods allows us to see internationalisation processes as a sequenced set of decisions in time and space, path dependent to some extent but subject to managerial discretion. Internationalisation process research can benefit from the use of historical research methods in analysis of sources, production of time-lines, using comparative evidence across time and space and in the examination of feasible alternative choices
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
The Formation of the First Massive Black Holes
Supermassive black holes (SMBHs) are common in local galactic nuclei, and
SMBHs as massive as several billion solar masses already exist at redshift z=6.
These earliest SMBHs may grow by the combination of radiation-pressure-limited
accretion and mergers of stellar-mass seed BHs, left behind by the first
generation of metal-free stars, or may be formed by more rapid direct collapse
of gas in rare special environments where dense gas can accumulate without
first fragmenting into stars. This chapter offers a review of these two
competing scenarios, as well as some more exotic alternative ideas. It also
briefly discusses how the different models may be distinguished in the future
by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First
Galaxies - Theoretical Predictions and Observational Clues", Springer
Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B.
Mobasher, in pres
Mutator dynamics in sexual and asexual experimental populations of yeast
<p>Abstract</p> <p>Background</p> <p>In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (<it>msh2</it>Î) in sexual and asexual populations of <it>Saccharomyces cerevisiae</it>.</p> <p>Results</p> <p>Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually.</p> <p>Conclusions</p> <p>We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the <it>msh2Î </it>mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that <it>msh2</it>Î also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.</p
An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin
© 2007 Tan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- âŠ