21 research outputs found
Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices
Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied by local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micrometre elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of âŒ2.5ânm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of α-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing
Place-Based Learning Communities on a Rural Campus: Turning Challenges into Assets
At Humboldt State University (HSU), location is everything. Students are as drawn to our spectacular natural setting as they are to the unique majors in the natural resource sciences that the university has to offer. However, the isolation that nurtures the pristine natural beauty of the area presents a difficult reality for students who are accustomed to more densely populated environments. With the large majority of our incoming students coming from distant cities, we set out to cultivate a âhome away from homeâ by connecting first-year students majoring in science, technology, engineering and math (STEM) to the communities and local environment of Humboldt County. To achieve this, we designed first-year place-based learning communities (PBLCs) that integrate unique aspects and interdisciplinary themes of our location throughout multiple high impact practices, including a summer experience, blocked-enrolled courses, and a first-year experience course entitled Science 100: Becoming a STEM Professional in the 21st Century. Native American culture, traditional ways of knowing, and contemporary issues faced by tribal communities are central features of our place-based curriculum because HSU is located on the ancestral land of the Wiyot people and the university services nine federally recognized American Indian tribes. Our intention is that by providing a cross-cultural, validating environment, students will: feel and be better supported in their academic pursuits; cultivate values of personal, professional and social responsibility; and increase the likelihood that they will complete their HSU degree. As we complete the fourth year of implementation, we aim to harness our experience and reflection to improve our programming and enable promising early results to be sustained
Polycomb Target Genes Are Silenced in Multiple Myeloma
Multiple myeloma (MM) is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG) proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP) assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep) and the histone deacetylase inhibitor LBH589 (Panobinostat), reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
WSES guidelines for management of Clostridium difficile infection in surgical patients
In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe
Recommended from our members
Diffusion of Innovations: Interplay of Social, Economic, Technological, and Policy Drivers in the Solar IndustryâSummary of UT Austin Student Capstone Research Projects
The University of Texas at Austinâs Policy Research Project (PRP), a nine-month (two semesters) capstone, is a keystone of the core curriculum at the LBJ School of Public Affairs. In PRPs, small groups of students, under the mentorship of a faculty director, take on real-world problems that require special knowledge and skill sets. PRPs expose students to challenges in formulating and executing research, and in communicating academic research and related complex data to broader stakeholder communities and decision makers. The PRP structure is an innovative and effective approach for integrating research within the teaching and training of graduate students who are preparing themselves to address important real-world problems at the intersection of society, economics, technology, and policy.
The project summaries below describe seven papers developed during September 2017 â May 2018 as part of a PRP on âDiffusion of Innovations: Interplay of Social, Economic, Technological, and Policy Drivers in the Solar Industry.â Twenty graduate students, drawn from the LBJ Schoolâs Masters in Public Affairs and Masters in Global Policy Studies programs and the Jackson School Geoscienceâs Energy and Earth Resources program, participated in this PRP. Dr. Varun Rai, Associate Professor and Associate Dean for Research at the LBJ School, directed the PRP, with support from his research team including: Dr. Ariane Beck, Dr. Ashok Sekar, D. Cale Reeves, and Erik Funkhouser. Clients for the project included the U.S. Department of Energy (Casey Canfield), Lawrence Berkeley National Laboratory (Ben Hoen, Galen Barbose Joachim Seel, NaĂŻm Darghouth, Ryan Wiser), and National Renewable Energy Laboratory (Benjamin Sigrin, Eric OâShaughnessy).
The seven projects separately addressed one of the following topics: (1) low- and middle-income PV adoption, (2) modeling economic and information intervention design, (3) evaluation of DOEâs Solar in Your Community Challenge, (4) property value impacts near large-scale solar facilities, (5) solar market maturity and evolution of business models, (6) social media data for predicting PV adoption, and (7) individual-level variation in adoption of innovations. Many of the papers relied on data collected and curated by Lawrence Berkeley National Laboratory, including data embedded within the annual Tracking the Sun and Utility-Scale Solar reports. Each of the seven teams in the PRP prepared a research paper. The PRP culminated with a full-day conference at UT Austin in May 2018 to present findings from the seven projects in this PRP to a broad audience of about 75 experts from academia, national labs, industry, and government from across the country
Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices
Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied by local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micrometre elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of âŒ2.5ânm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of α-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing
A multisite managed environment facility for targeted trait and germplasm phenotyping
Field evaluation of germplasm for performance under water and heat stress is challenging. Field environments are variable and unpredictable, and genotypeenvironment interactions are difficult to interpret if environments are not well characterised. Numerous traits, genes and quantitative trait loci have been proposed for improving performance but few have been used in variety development. This reflects the limited capacity of commercial breeding companies to screen for these traits and the absence of validation in field environments relevant to breeding companies, and because little is known about the economic benefit of selecting one particular trait over another. The value of the proposed traits or genes is commonly not demonstrated in genetic backgrounds of value to breeding companies. To overcome this disconnection between physiological trait breeding and uptake by breeding companies, three field sites representing the main environment types encountered across the Australian wheatbelt were selected to form a set of managed environment facilities (MEFs). Each MEF manages soil moisture stress through irrigation, and the effects of heat stress through variable sowing dates. Field trials are monitored continuously for weather variables and changes in soil water and canopy temperature in selected probe genotypes, which aids in decisions guiding irrigation scheduling and sampling times. Protocols have been standardised for an essential core set of measurements so that phenotyping yield and other traits are consistent across sites and seasons. MEFs enable assessment of a large number of traits across multiple genetic backgrounds in relevant environments, determine relative trait value, and facilitate delivery of promising germplasm and high value traits into commercial breeding programs