919 research outputs found

    Universal velocity distributions in an experimental granular fluid

    Full text link
    We present experimental results on the velocity statistics of a uniformly heated granular fluid, in a quasi-2D configuration. We find the base state, as measured by the single particle velocity distribution f(c)f(c), to be universal over a wide range of filling fractions and only weakly dependent on all other system parameters. There is a consistent overpopulation in the distribution's tails, which scale as fexp(const.×c3/2)f\propto\exp(\mathrm{const.}\times c^{-3/2}). More importantly, the high probability central region of f(c)f(c), at low velocities, deviates from a Maxwell-Boltzmann by a second order Sonine polynomial with a single adjustable parameter, in agreement with recent theoretical analysis of inelastic hard spheres driven by a stochastic thermostat. To our knowledge, this is the first time that Sonine deviations have been measured in an experimental system.Comment: 13 pages, 15 figures, with minor corrections, submitted to Phys. Rev.

    Caging dynamics in a granular fluid

    Full text link
    We report an experimental investigation of the caging motion in a uniformly heated granular fluid, for a wide range of filling fractions, ϕ\phi. At low ϕ\phi the classic diffusive behavior of a fluid is observed. However, as ϕ\phi is increased, temporary cages develop and particles become increasingly trapped by their neighbors. We statistically analyze particle trajectories and observe a number of robust features typically associated with dense molecular liquids and colloids. Even though our monodisperse and quasi-2D system is known to not exhibit a glass transition, we still observe many of the precursors usually associated with glassy dynamics. We speculate that this is due to a process of structural arrest provided, in our case, by the presence of crystallization.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Photoelastic force measurements in granular materials

    Full text link
    Photoelastic techniques are used to make both qualitative and quantitative measurements of the forces within idealized granular materials. The method is based on placing a birefringent granular material between a pair of polarizing filters, so that each region of the material rotates the polarization of light according to the amount of local of stress. In this review paper, we summarize past work using the technique, describe the optics underlying the technique, and illustrate how it can be used to quantitatively determine the vector contact forces between particles in a 2D granular system. We provide a description of software resources available to perform this task, as well as key techniques and resources for building an experimental apparatus
    corecore