12 research outputs found

    Characterization of tin-plated steel

    Get PDF
    Tinplating on steel is a useful industrial process extensively used for food packaging. Cold-rolled annealed steel coated with tin gives the steel corrosion resistance property and a beautiful luster. Tinplating on steel is a complex process where rolled and annealed steel sheets are cleaned with acid to remove rust, grease, or oil from the surface. Pure tin is electrodeposited on this freshly prepared surface after the electrodeposition of tin on the steel strip; the surface becomes lustrous, the color of pure tin appears, and the finish is called matte. Very often, the flowing heat treatment is just about the tin melting point of 232°C–265°C. After electrodeposition, pure tin deposits on the steel surface; however, a chemical reaction between tin and iron occurs during the brightening treatment. This process results in iron–tin intermetallic formation; their orientation grain structure and orientation of substrate steel all have a synergistic effect on the final properties of tin-coated steel. In the present study, an attempt has been made to study this parameter in detail. A total of five commercially produced tin-plated steel have been selected for the present purpose, and both tin coating and substrate steel have been thoroughly characterized by optical microscopy, scanning electron microscopy, X-ray diffraction (XRD), and the crystallographic texture point of view; however, the best result has been discussed in this paper. The different phases of tin and the iron–tin compound have been identified using XRD, X-ray, and a texture goniometer that are used to find out the crystallographic texture observed in the presence of FeSn2, FeSn, and Sn in tin coating; the volume fraction of these phases is observed to vary from one sample to another. This variation may affect tinplating steel’s final property, which can be studied in the future work

    Influence of an Engineered Notch on the Electromagnetic Radiation Performance of NiTi Shape Memory Alloy

    No full text
    This work explores the influence of a pre-engineered notch on the electromagnetic radiation (EMR) parameters in NiTi shape memory alloy (SMA) during tensile tests. The test data showed that the EMR signal fluctuated between oscillatory and exponential, signifying that the specimen’s viscosity damping coefficient changes during strain hardening. The EMR parameters, maximum EMR amplitude, and average EMR energy release rate remained constant initially but rose sharply with the plastic zone radius with progressive loading. It was postulated that new Frank–Read sources permit dislocation multiplication and increase the number of edge dislocations participating in EMR emissions, leading to a rise in the value of EMR parameters. The study of the correlation between EMR emission parameters and the plastic zone radius before the crack tip is a vital crack growth monitoring tool. An analysis of the interrelationship of the EMR energy release rate at fracture with the elastic strain energy release rate would help develop an innovative approach to assess fracture toughness, a critical parameter for the design and safety of metals. The microstructural analysis of tensile fractures and the interrelation between deformation behaviours concerning the EMR parameters offers a novel and real-time approach to improve the extant understanding of the behaviour of metallic materials

    Parabolic trough solar collectors: A sustainable and efficient energy source

    No full text
    Fossil fuels are a finite resource that is becoming increasingly expensive. Solar energy is a renewable resource that has the potential to provide a lifetime supply of energy. Parabolic trough solar collectors are a type of solar thermal collector that can be used to generate electricity. This paper discusses the potential advantages and challenges of using parabolic trough solar collectors. One of the main advantages of parabolic trough solar collectors is their scalability. They can be used to generate electricity on a small scale, such as for a home or business, or on a large scale, such as for a power plant. Parabolic trough solar collectors are also reliable and have a long lifespan. They are not as susceptible to weather damage as other types of solar collectors, such as photovoltaic panels. However, there are some challenges associated with using parabolic trough solar collectors. One challenge is that they require large land areas. Another challenge is that they can be expensive to maintain. Despite the potential, further research is essential to address these issues. Future prospects lie in optimizing land use, enhancing maintenance strategies, and advancing collector technology to harness the full potential of parabolic trough solar collectors. Overall, parabolic trough solar collectors are a promising technology for generating electricity from solar energy. However, more research is needed to address the challenges associated with this technology

    Exploring the impact of varying notch-width ratios on electromagnetic radiation parameters at tensile fracture of C35000 brass

    No full text
    The paper discusses experimental research to analyze how the notch-width ratio (2a/w) impacts Electromagnetic Radiation (EMR) emission parameters at tensile fracture in C35000 brass. The EMR emission signals during tensile fracture were captured using a copper chip antenna and stored in an oscilloscope for further analysis. The EMR parameters and mechanical parameters at fracture showed a smooth correlation. Investigating the association between the EMR parameters and the plastic zone radius formed before the crack tip may help develop an innovative tool for crack growth monitoring. The interrelation between the EMR energy release rate and the Elastic strain energy release rate may help create an innovative method for assessing fracture toughness, a fundamental property of metallic materials. The EMR energy release rate exhibited a parabolic relationship with an analytical correlation of stacking fault energy. Field emission scanning electron microscopy (FESEM) examined the fractured specimen's microstructure. A thorough examination of the relationship between dislocations, EMR characteristics, and real-time applications could be a novel technique for understanding material behaviour in detail

    Investigation and impact assessment of soybean biodiesel, methyl oleate, and diesel blends on CRDI performance and emissions

    No full text
    In the present study, a binary biofuel blend was prepared by blending soy methyl ester (SME100) and methyl oleate (MO) SME50-M50 with diesel. The physiochemical properties of blended fuels were also investigated. The performance and emissions characteristics of all fuel blends were estimated using a common-rail direct injection (CRDI) engine. The outcomes demonstrate a reduction in brake-specific fuel consumption (BSFC) when enriched biodiesel is used in comparison to SME100, nonetheless by the virtue of viscosity and heating value there is an increase in the BSFC value when compared to diesel. The average BSFC values were obtained as 5.3% (E25), 10.6% (E50), 17.5% (E75), 30% (SME100) and 14.9% (SME50-M50) higher than that of diesel. BTE was found to be highest for E25 and lowest for SME100 among all the blends. NOx emissions with blended biodiesel were slightly higher than diesel on account of MO being unsaturated, resulting in shorter ignition delay. The average NOx values obtained were higher than that of diesel and the corresponding values are 2.91% (E25), 4.1% (E50), 5.8% (E75), 8.3% (SME100) and 15.8% (SME50-M50). As a result of the increased oxygen content of the fuel, the concentrations of UHC and CO depreciated with the rise in concentration of soy methyl ester and MO (SME50-M50). Currently, Euro 6.2, which is the most recent emission regulation, uses 10% biofuel (B10); however, the results of this study establishes that E25, as an alternate fuel, complies with the contemporary engines without requiring any engine modifications

    A hybrid model based on convolution neural network and long short-term memory for qualitative assessment of permeable and porous concrete

    No full text
    Estimating design factors like concrete strength and durability is complicated by the cement industry's practice of producing multiple grades of cement for different uses, necessitating substantial labor hours and monetary investment. The experimental findings of accelerated carbonation-induced corrosion and associated durability characteristics of concrete built with high-volume Class F Fly Ash (FA), including AC impendence, half-cell potential, water permeability, and volume of permeable voids. FA was added to ordinary portland cement at varied replacement amounts (0–70%) to create concrete specimens. The concrete specimen has been prepared by varying different proportions of water cement ratio (0.45, 0.40, and 0.35). To predict the compressive strength and carbonation level of concrete, this study presents a simulation environment based on Artificial Intelligence (AI) that makes use of input parameters such as water/cement ratio, fly-ash percentage, and time duration. Here, One-Dimensional Convolution Neural Network based Long Short-Term Memory (1D-CNN-LSTM) has been proposed for estimating the carbonation depth and compressive strength of concrete. The developed model will be compared with other state-of-the-art techniques, including DL and ML-based techniques. The obtained R2 values from the proposed 1D-CNN-LSTM regression network deliver accuracy of 80% for estimating carbonation depth and 96% for predicting compressive strength. The proposed methodology demonstrates the use of modern AI-based techniques in the actual design model and illustrates the development of DL methods such as LSTM and CNN

    Assessment of the mechanical and durability characteristics of bio-mineralized Bacillus subtilis self-healing concrete blended with hydrated lime and brick powder

    No full text
    Cement is the main constituent of the concrete structure. Using rejected brick as pozzolana in replacement of cement reduced the utilization of natural resources, conserved the environment, and controlled waste disposal. Hydrated lime has been utilized as a chemical additive to improve the pozzolanic reaction of finely ground waste brick particles. This research investigates the process of biomineralization to enhance the strength and durability characteristics of bacterial concrete incorporating hydrated lime and brick powder (HBr). In this context, cement was partially replaced with HBr in different proportions 10%, 20%, and 30% by weight. Furthermore, the HBr mixtures were meticulously prepared with and without the incorporation of Bacillus subtilis. Tests for strength and durability were performed at the age of 28 and 56 days of concrete. The self-healing proficiency of the bacterial concrete was evaluated through compressive strength, water permeability, and chloride penetration, while the microstructure analysis was conducted using field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The results show that at the age of 56 days, CaCO3 precipitation caused by Bacillus subtilis increases the compressive strength of BHBr10 by 19.07%. The durability properties in terms of chloride ion penetrability and water permeability exhibited substantial improvements of 40.03% and 61.9% respectively. Additionally, the FESEM micrographs along with the EDS analysis corroborated the presence of CaCO3 precipitation crystals

    Nano indentation studies on ceramic thinfilms coatings deposited using sputtering process for energy applications

    No full text
    Nanoindentation technique is generally used for measuring thinfilm mechanical properties such as hardness, modulus and stiffness. Nanoindentation of ceramic thinfilms of SiO2, Si3N4 and Al2O3 was deposited by radio-frequency (RF) magnetron sputtering on the stainless steel (SS304) substrates using a nanoindenter. Under varied sputtering conditions, the “as-deposited” film was amorphous. The as-deposited thin film had a thickness of 200 nm. The amorphous film was loaded/unloaded only once while operating in load control mode. Hardness and Young's modulus, two mechanical properties of the ceramic thinfilms, were also measured. When SiO2, Si3N4, and Al2O3 thinfilms are deposited onto stainless steel substrates using an RF magnetron sputtering, the roughness of the ceramic thinfilms is in the range of 8 to 12 nm. The nanoindentation results were compared, the hardness of the coatings is in the range of 6 to 9 GPa, and these ceramic coatings can be used as an adhesive layer for multilayer thin film coating

    Simulation of metal ceramic single layer coatings for solar energy applications

    No full text
    The coating materials, thickness and number of layers directly influence the reflectance and absorptance properties of the thin films. However, while selecting the materials for single and coatings, the substrate’s refractive index; bond layer, functional layer and protective layer have to be carefully chosen to obtain the desired reflectance and absorptance values. Hence, modelling and simulating the thin film coatings is essential before conducting the experiments to get meaningful results. The simulation results of single coatings have been discussed. Generally, glass is one of the widely used substrate materials for solar reflectors, aluminum is the optimal functional material, with a reflection of 93 % of light. Nickel would be a preferable functional layer with a reflection of 64 % and absorptance of 36 %, Si3N4 being the acceptable bond layers and protective layers with a reflection of 68 % some solar thermal receiver tube applications however research effort is being made to find alternate lightweight materials for this application. Polycarbonate has been chosen as an alternate material for the substrate because it is light in weight with a reflection of 93 %, which is durable and not fragile
    corecore