646 research outputs found

    Near-equivalence of the role of structural unpinning number, basicity and reciprocal average electronegativity in determining the conductivity of glasses

    Get PDF
    The chemical approach made to investigate the origin of fast ion conduction in Agl-based fast ion conducting (FIC) glasses has been extended to various ionically conducting systems containing Na+ ion. An index known as structural unpinning number (SUN), S, has been defined for this purpose based on the unscreened nuclear charge on the cation and the average electronegativity of all the anions. Variation of the log(conductivity), at a given temperature, as a function of structural unpinning number, optical basicity, λ, and the reciprocal average electronegativity of all the anions, l/χa, has been examined for a number of Na+-ion conducting glasses and a nearly identical variation has been noticed in all the cases. The equivalence of these chemical parameters as determinants of the conductivity behavior of glasses has thus been established and the origin of this equivalence has been discussed

    Physico chemical investigation of fast ion conducting AgI-Ag<SUB>2</SUB>SeO<SUB>4</SUB> glasses

    Get PDF
    Fast ion conducting glasses in the system xAgI-(1-x)Ag2SeO4 (0.5&#x2264;x&#x2264;0.75), prepared by melt quenching route have been investigated in detail. Spectroscopic, thermal and electrical properties including dielectric relaxation have been studied. An attempt is made to understand the variation in these properties by using a structural unpinning model

    Generalised Shastry-Sutherland Models in three and higher dimensions

    Full text link
    We construct Heisenberg anti-ferromagnetic models in arbitrary dimensions that have isotropic valence bond crystals (VBC) as their exact ground states. The d=2 model is the Shastry-Sutherland model. In the 3-d case we show that it is possible to have a lattice structure, analogous to that of SrCu_2(BO_3)_2, where the stronger bonds are associated with shorter bond lengths. A dimer mean field theory becomes exact at d -> infinity and a systematic 1/d expansion can be developed about it. We study the Neel-VBC transition at large d and find that the transition is first order in even but second order in odd dimensions.Comment: Published version; slightly expande

    Direct observation of the multiple spin gap excitations in two-dimensional dimer system SrCu2(BO3)2

    Full text link
    Various spin gap excitations have been observed in the two-dimensional dimer system SrCu_2(BO_3)_2 by means of submillimeter wave ESR. The zero-field energy gap of the lowest spin gap excitation shows a splitting into two triplet modes and the energy splitting clearly depends on the magnetic field orientation when a field is rotated in the {\mib {ac}}-plane. A zero-field splitting is also found between the S(_z)=+1 and S(_z)=-1 branches of each triplet. These behaviors are qualitatively explained by considering the anisotropic exchange coupling of inter-dimer and intra-dimer, respectively. The averaged value of the lowest spin gap energy is determined to be 722 \pm 2 GHz(34.7 K). We have also found the second spin gap excitation at 1140 GHz(54.7 K), which indicates that the inter-dimer coupling is significantly strong. Besides these modes, a number of gapped ESR absorption are found and we propose that these multiple magnetic excitations are caused by the localized nature of the excited state in the present system.Comment: 4pages 4figure

    Resonant two-magnon Raman scattering in antiferromagnetic insulators

    Full text link
    We propose a theory of two-magnon {\it resonant\/} Raman scattering from antiferromagnetic insulators, which contains information both on the magnetism and the carrier properties in the lighly doped phases. We argue that the conventional theory does not work in the resonant regime, in which the energy of the incident photon is close to the gap between the conduction and valence bands. We identify the diagram which gives the dominant contribution to Raman intensity in this regime and show that it can explain the unusual features in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency.Comment: 11 pages (REVTeX) + 3 figures in a single postscript file are appended in uuencoded format, preprint TCSUH-94:09

    Interpolation between Hubbard and supersymmetric t-J models. Two-parameter integrable models of correlated electrons

    Full text link
    Two new one-dimensional fermionic models depending on two independent parameters are formulated and solved exactly by the Bethe-ansatz method. These models connect continuously the integrable Hubbard and supersymmetric t-J models.Comment: 11pages and no figure

    Dynamical Structure Factors of the Spin-1/2 XXZ Chain with Inverse-Square Exchange and Ising Anisotropy

    Full text link
    The dynamical properties of the S=1/2 antiferromagnetic XXZ chain are studied by the exact diagonalization and the recursion method of finite systems up to 24 sites. Two types of the exchange interaction are considered: one is the nearest-neighbor type, and the other is the inverse-square one. As the Ising anisotropy becomes larger, there appears a noticeable difference in the transverse component S^{xx}(q,\omega) between the two types of the exchange. For the nearest-neighbor type, the peak frequency of S^{xx}(q,\omega) for each q approaches the center of the continuum spectrum. On the contrary, the peak frequency for the inverse-square type moves to the upper edge of the continuum, and separates from the continuum for the anisotropy larger than the threshold value. Whether the interaction between domain walls (solitons) is absent or repulsive in the Ising limit leads to this difference in the behavior of S^{xx}(q,\omega). In the longitudinal component S^{zz}(q,\omega), on the other hand, the feature of the dynamics is scarcely different between the two types. The energy gap and the static properties are also discussed.Comment: 10 pages. A hard copy of 16 figures is available on request. Submitted to J. Phys. Soc. Jp

    A non-Hermitian critical point and the correlation length of strongly correlated quantum systems

    Full text link
    We study a non-Hermitian generalization of quantum systems in which an imaginary vector potential is added to the momentum operator. In the tight-binding approximation, we make the hopping energy asymmetric in the Hermitian Hamiltonian. In a previous article, we conjectured that the non-Hermitian critical point where the energy gap vanishes is equal to the inverse correlation length of the Hermitian system and we confirmed the conjecture for two exactly solvable systems. In this article, we present more evidence for the conjecture. We also argue the basis of our conjecture by noting the dispersion relation of the elementary excitation.Comment: 25 pages, 18 figure

    Motion of Bound Domain Walls in a Spin Ladder

    Full text link
    The elementary excitation spectrum of the spin-12\frac{1}{2} antiferromagnetic (AFM) Heisenberg chain is described in terms of a pair of freely propagating spinons. In the case of the Ising-like Heisenberg Hamiltonian spinons can be interpreted as domain walls (DWs) separating degenerate ground states. In dimension d>1d>1, the issue of spinons as elementary excitations is still unsettled. In this paper, we study two spin-12\frac{1}{2} AFM ladder models in which the individual chains are described by the Ising-like Heisenberg Hamiltonian. The rung exchange interactions are assumed to be pure Ising-type in one case and Ising-like Heisenberg in the other. Using the low-energy effective Hamiltonian approach in a perturbative formulation, we show that the spinons are coupled in bound pairs. In the first model, the bound pairs are delocalized due to a four-spin ring exchange term in the effective Hamiltonian. The appropriate dynamic structure factor is calculated and the associated lineshape is found to be almost symmetric in contrast to the 1d case. In the case of the second model, the bound pair of spinons lowers its kinetic energy by propagating between chains. The results obtained are consistent with recent theoretical studies and experimental observations on ladder-like materials.Comment: 12 pages, 7 figure

    Spin gap in the Quasi-One-Dimensional S=1/2 Antiferromagnet: Cu2(1,4-diazacycloheptane)2Cl4

    Full text link
    Cu_{2}(1,4-diazacycloheptane)_{2}Cl_{4} contains double chains of spin 1/2 Cu^{2+} ions. We report ac susceptibility, specific heat, and inelastic neutron scattering measurements on this material. The magnetic susceptibility, χ(T)\chi(T), shows a rounded maximum at T = 8 K indicative of a low dimensional antiferromagnet with no zero field magnetic phase transition. We compare the χ(T)\chi(T) data to exact diagonalization results for various one dimensional spin Hamiltonians and find excellent agreement for a spin ladder with intra-rung coupling J1=1.143(3)J_1 = 1.143(3) meV and two mutually frustrating inter-rung interactions: J2=0.21(3)J_2 = 0.21(3) meV and J3=0.09(5)J_3 = 0.09(5) meV. The specific heat in zero field is exponentially activated with an activation energy Δ=0.89(1)\Delta = 0.89(1) meV. A spin gap is also found through inelastic neutron scattering on powder samples which identify a band of magnetic excitations for 0.8<ω<1.50.8 < \hbar\omega < 1.5 meV. Using sum-rules we derive an expression for the dynamic spin correlation function associated with non-interacting propagating triplets in a spin ladder. The van-Hove singularities of such a model are not observed in our scattering data indicating that magnetic excitations in Cu_{2}(1,4-diazacycloheptane)_{2}Cl_{4} are more complicated. For magnetic fields above Hc17.2H_{c1} \simeq 7.2 T specific heat data versus temperature show anomalies indicating a phase transition to an ordered state below T = 1 K.Comment: 9 pages, 8 postscript figures, LaTeX, Submitted to PRB 8/4/97, e-mail Comments to [email protected]
    corecore