53 research outputs found
Global diversity and antimicrobial resistance of typhoid fever pathogens : insights from a meta-analysis of 13,000 Salmonella Typhi genomes
DATA AVAILABILITY : All data analysed during this study are publicly accessible. Raw Illumina sequence reads have been submitted to the European Nucleotide Archive (ENA), and individual sequence accession numbers are listed in Supplementary file 2. The full set of n=13,000 genome assemblies generated for this study are available for download from FigShare: https://doi.org/10.26180/21431883. All assemblies of suitable quality (n=12,849) are included as public data in the online platform Pathogenwatch (https://pathogen.watch). The data are organised into collections, which each comprise a neighbour-joining phylogeny annotated with metadata, genotype, AMR determinants, and a linked map. Each contributing study has its own collection, browsable at https://pathogen.watch/collections/all?organismId= 90370. In addition, we have provided three large collections, each representing roughly a third of the total dataset presented in this study: Typhi 4.3.1.1 (https://pathogen.watch/collection/ 2b7mp173dd57-clade-4311), Typhi lineage 4 (excluding 4.3.1.1) (https://pathogen.watch/collection/ wgn6bp1c8bh6-clade-4-excluding-4311), and Typhi lineages 0-3 (https://pathogen.watch/collection/ 9o4bpn0418n3-clades-0-1-2-and-3). In addition, users can browse the full set of Typhi genomes in Pathogenwatch and select subsets of interest (e.g. by country, genotype, and/or resistance) to generate a collection including neighbour-joining tree for interactive exploration.SUPPLEMENTARY FILES : Available at https://elifesciences.org/articles/85867/figures#content. SUPPLEMENTARY FILE 1. Details of local ethical approvals provided for studies that were unpublished at the time of contributing data to this consortium project. Most data are now published, and the citations for the original studies are provided here. National surveillance programs in Chile (Maes et al., 2022), Colombia (Guevara et al., 2021), France, New Zealand, and Nigeria (Ikhimiukor et al., 2022b) were exempt from local ethical approvals as these countries allow sharing of non-identifiable pathogen sequence data for surveillance purposes. The US CDC Internal Review Board confirmed their approval was not required for use in this project (#NCEZID-ARLT- 10/ 20/21-fa687). SUPPLEMENTARY FILE 2. Line list of 13,000 genomes included in the study. SUPPLEMENTARY FILE 3. Source information recorded for genomes included in the study. ^Indicates cases included in the definition of ‘assumed acute illness’. SUPPLEMENTARY FILE 4. Summary of genomes by country. SUPPLEMENTARY FILE 5. Genotype frequencies per region (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 6. Genotype frequencies per country (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 7. Antimicrobial resistance (AMR) frequencies per region (N, %, 95% confidence interval; aggregated 2010–2020). SUPPLEMENTARY FILE 8. Antimicrobial resistance (AMR) frequencies per country (N, %, 95% confidence interval; annual and aggregated, 2010–2020). SUPPLEMENTARY FILE 9. Laboratory code master list. Three letter laboratory codes assigned by the consortium.BACKGROUND : The Global Typhoid Genomics Consortium was established to bring together the
typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi)
genomic data to inform public health action. This analysis, which marks 22 years since the publication
of the first Typhi genome, represents the largest Typhi genome sequence collection to date
(n=13,000).
METHODS : This is a meta-analysis
of global genotype and antimicrobial resistance (AMR) determinants
extracted from previously sequenced genome data and analysed using consistent methods
implemented in open analysis platforms GenoTyphi and Pathogenwatch.
RESULTS : Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58)
has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate
and have independently evolved AMR. Data gaps remain in many parts of the world, and we
show the potential of travel-associated
sequences to provide informal ‘sentinel’ surveillance for
such locations. The data indicate that ciprofloxacin non-susceptibility
(>1 resistance determinant) is
widespread across geographies and genotypes, with high-level
ciprofloxacin resistance (≥3 determinants)
reaching 20% prevalence in South Asia. Extensively drug-resistant
(XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone
resistance has emerged in eight non-XDR
genotypes, including a ciprofloxacin-resistant
lineage
(4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South
Asia, including in two common ciprofloxacin-resistant
genotypes.
CONCLUSIONS : The consortium’s aim is to encourage continued data sharing and collaboration to
monitor the emergence and global spread of AMR Typhi, and to inform decision-making
around the
introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies.Fellowships from the European Union (funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council.https://elifesciences.org/am2024Medical MicrobiologySDG-03:Good heatlh and well-bein
Comparison of nonstructural protein-1 antigen detection by rapid and enzyme-linked immunosorbent assay test and its correlation with polymerase chain reaction for early diagnosis of dengue
INTRODUCTION: Early diagnosis of dengue is important for appropriate clinical management and vector control. Different serological tests based on the principle of immunochromatography and enzyme-linked immunosorbent assay (ELISA) are commonly used for detection of antigen and antibodies of dengue virus. The performance of these tests depends on the sensitivity and specificity. Hence, the study was undertaken to compare nonstructural protein-1 (NS1) antigen detection by rapid and ELISA with real-time polymerase chain reaction (RT-PCR) for diagnosis of dengue.
MATERIALS AND METHODS: Prospective laboratory study was carried out on sera samples (n = 200) from clinically suspected cases of dengue. The sera samples were subjected for NS1 antigen detection test by rapid test, NS1 ELISA, and RT-PCR. The results of rapid and ELISA tests were compared with real Time PCR.
RESULTS: The sensitivity, specificity, positive, and negative predictive value of rapid dengue NS1 antigen test were 81.5%, 66.7%, 78.2%, and 71.1%, respectively whereas that of NS1 ELISA were 89.9%, 100%, 100%, and 94%, respectively. Concordance of Rapid NS1 and NS1 ELISA with PCR was 75.5% and 94%.
DISCUSSION AND CONCLUSION: NS1 antigen ELISA can be implemented in diagnostic laboratories for diagnosis of dengue in the acute phase of illness. The test also has great potential value for use in epidemic situations, as it could facilitate the early screening of patients and limit disease expansion
Concurrent evaluation of microscopic observation of drug susceptibility assay for pulmonary and extrapulmonary tuberculosis
BACKGROUND: Methods for detection and drug susceptibility of tuberculosis (TB) with solid media are inexpensive but slow and laborious. Rapid methods to diagnose TB and multidrug-resistant TB (MDR-TB) are a global priority for TB control.
OBJECTIVES: A study was performed to compare the sensitivity of detection of mycobacterial growth and time of culture positivity by microscopic observation of drug susceptibility (MODS) assay with that of Lowenstein–Jensen (LJ) culture in pulmonary and extrapulmonary TB and to evaluate the concordance of the susceptibilities to isoniazid (INH) and rifampicin (RIF) by MODS and proportion method on LJ.
MATERIALS AND METHODS: A prospective, laboratory-based study was conducted on a total of 300 samples from suspected cases of pulmonary and extrapulmonary TB. Samples were inoculated on LJ medium as per the standard guidelines and MODS assay was performed.
RESULTS: Sensitivity of MODS assay was 80% and 83.3% and specificity was 92.9% and 83.3% for pulmonary and extrapulmonary samples, respectively. Difference between mean time to detection of Mycobacterium TB (MTB) by LJ medium and MODS was statistically significant, with MODS being faster. drug susceptibility testing (DST) by MODS when compared to economic variant of proportion method was 87.87% for RIF, 90.9% for INH, and 96.96% for MDR-TB detection.
CONCLUSIONS: MODS assay provides rapid, safe, and sensitive detection of TB faster than the existing gold standard. It is extremely promising in effectively diagnosing MDR-TB
- …