9 research outputs found

    Summation of emission from superradiant sources as a way to obtain extreme power density microwaves

    Get PDF
    A theoretical model that covers both spontaneous and stimulated Cherenkov emission from an extended electron bunch has been developed. The initiation is described of the generation of superradiant pulses [1-3] by emission from the leading edge of the electron bunch. In combination with the proven experimentally picosecond stability of explosive emission from a cold cathode [4], it provides the possibility for strong correlation of phase of the SR pulses with respect to the leading edge of the electron pulse [5]

    Experimental plasma maser as a broadband noise amplifier. II. Short pulse

    No full text
    This paper presents an experimental plasma maser driven by a 2-ns long, high-current electron beam with a typical particles energy of 270 ± 10 keV, a pulsed power of 450 ± 30 MW, and a total energy of 0.85 ± 0.03 J. Tunable plasma characteristics define variations in the spectral maxima of excited high-power microwaves in the range from 3 to 25 GHz. The short beam current pulse has provided the device operation in the mode of a noise amplification with the energy efficiency of 26% ± 3%, mean microwave power over the beam current pulse of 117 ± 10 MW, and an instant (peak) power of up to 430 ± 30 MW. © 2021 Author(s)
    corecore