134 research outputs found

    Influence of e-e scattering on the temperature dependence of the resistance of a classical ballistic point contact in a two-dimensional electron system

    Full text link
    We experimentally investigate the temperature (T) dependence of the resistance of a classical ballistic point contact (PC) in a two-dimensional electron system (2DES). The split-gate PC is realized in a high-quality AlGaAs/GaAs heterostructure. The PC resistance is found to drop by more than 10% as T is raised from 0.5 K to 4.2 K. In the absence of a magnetic field, the T dependence is roughly linear below 2 K and tends to saturate at higher T. Perpendicular magnetic fields on the order of a few 10 mT suppress the T-dependent contribution dR. This effect is more pronounced at lower temperatures, causing a crossover to a nearly parabolic T dependence in a magnetic field. The normalized magnetic field dependencies dR(B) permit an empiric single parameter scaling in a wide range of PC gate voltages. These observations give strong evidence for the influence of electron-electron (e-e) scattering on the resistance of ballistic PCs. Our results are in qualitative agreement with a recent theory of the e-e scattering based T dependence of the conductance of classical ballistic PCs [ Phys. Rev. Lett. 101 216807 (2008) and Phys. Rev. B 81 125316 (2010)].Comment: as publishe

    Calculations of spin induced transport in ferromagnets

    Full text link
    Based on first-principles density functional calculations, a general approach for determining and analyzing the degree of spin polarization (P) in ferromagnets is presented. The approach employs the so-called tetrahedron method to evaluate the Fermi surface integrations of P in both ballistic and diffusive regimes. The validity of the method is examined by comparing the calculated P values for Fe and Ni with the experiment. The method is shown to yield highly accurate results with minimal computational effort. Within our approach, it is also possible to systematically analyze the contributions of various types of electronic states to the spin induced transport. As a case study, the transport properties of the soft-ferromagnet CeMnNi4 are investigated in order to explain the origin of the existing difference between the experimental and theoretical values of P in this intermetallic compound.Comment: 6 pages, 4 figures; to appear in Physical Review B 75 (2007

    Tunneling of Bloch electrons through vacuum barrier

    Full text link
    Tunneling of Bloch electrons through a vacuum barrier introduces new physical effects in comparison with the textbook case of free (plane wave) electrons. For the latter, the exponential decay rate in the vacuum is minimal for electrons with the parallel component of momentum k=0{\bf k}_\parallel=0, and the prefactor is defined by the electron momentum component in the normal to the surface direction. However, the decay rate of Bloch electrons may be minimal at an arbitrary k{\bf k}_\parallel (``hot spots''), and the prefactor is determined by the electron's group velocity, rather than by its quasimomentum.Comment: 4 pages, no fig

    Nonlinear magnetoconductance of a classical ballistic system

    Full text link
    We study nonlinear transport through a classical ballistic system accounting for the Coulomb interaction between electrons. The joint effect of the applied bias VV and magnetic field HH on the electron trajectories results in a component of the non-linear current I(V,H)I(V,H) which lacks the HHH\to -H symmetry: δI=αclV2H\delta I=\alpha_{cl} V^2 H. At zero temperature the magnitude of αcl\alpha_{cl} is of the same order as that arising from the quantum interference mechanism. At higher temperatures the classical mechanism is expected to dominate due to its relatively weak temperature dependence.Comment: 5 pages, 1 figur

    Zero-bias anomalies in electrochemically fabricated nanojunctions

    Full text link
    A streamlined technique for the electrochemical fabrication of metal nanojunctions (MNJs) between lithographically defined electrodes is presented. The first low-temperature transport measurements in such structures reveal suppression of the conductance near zero-bias. The size of the zero-bias anomaly (ZBA) depends strongly on the fabrication electrochemistry and the dimensions of the resulting MNJ. We present evidence that the nonperturbative ZBA in atomic-scale junctions is due to a density of states suppression in the leads.Comment: 4 pages, 4 figure

    Nucleation and Collapse of the Superconducting Phase in Type-I Superconducting Films

    Full text link
    The phase transition between the intermediate and normal states in type-I superconducting films is investigated using magneto-optical imaging. Magnetic hysteresis with different transition fields for collapse and nucleation of superconducting domains is found. This is accompanied by topological hysteresis characterized by the collapse of circular domains and the appearance of lamellar domains. Magnetic hysteresis is shown to arise from supercooled and superheated states. Domain-shape instability resulting from long-range magnetic interaction accounts well for topological hysteresis. Connection with similar effects in systems with long-range magnetic interactions is emphasized

    Spin-polarized electron transport in ferromagnet/semiconductor heterostructures: Unification of ballistic and diffusive transport

    Full text link
    A theory of spin-polarized electron transport in ferromagnet/semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductor structures, is developed. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. A key element of the unified description of transport inside a (nondegenerate) semiconductor is the thermoballistic current consisting of electrons which move ballistically in the electric field arising from internal and external electrostatic potentials, and which are thermalized at randomly distributed equilibration points. The ballistic component in the unified description gives rise to discontinuities in the chemical potential at the boundaries of the semiconductor, which are related to the Sharvin interface conductance. By allowing spin relaxation to occur during the ballistic motion between the equilibration points, a thermoballistic spin-polarized current and density are constructed in terms of a spin transport function. An integral equation for this function is derived for arbitrary values of the momentum and spin relaxation lengths. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the standard spin drift-diffusion equation. The spin polarization in ferromagnet/semiconductor heterostructures is obtained by invoking continuity of the current spin polarization and matching the spin-resolved chemical potentials on the ferromagnet sides of the interfaces. Allowance is made for spin-selective interface resistances. Examples are considered which illustrate the effects of transport mechanism and electric field.Comment: 23 pages, 8 figures, REVTEX 4; minor corrections introduced; to appear in Phys. Rev.

    Triple-gap superconductivity of MgB2 - (La,Sr)MnO3 composite. Which of the gaps is proximity induced?

    Full text link
    Interplay of superconductivity and magnetism in a composite prepared of the ferromagnetic half-metallic La_0.67Sr_0.33MnO (LSMO) nanoparticles and the conventional s-wave superconductor MgB_2 has been studied. A few principal effects have been found in bulk samples. With an onset of the MgB_2 superconductivity, a spectacular drop of the sample resistance has been detected and superconductivity has been observed at temperature up to 20K. Point-contact (PC) spectroscopy has been used to measure directly the superconducting energy coupling. For small voltage, an excess current and doubling of the PC's normal state conductance have been found. Conductance peaks corresponding to three energy gaps are clearly observed. Two of these gaps we identified as enhanced \Delta_{\pi} and \Delta_{\sigma} gaps originating from the MgB_2; the third gap \Delta_{tr} is more than three times larger than the largest MgB_2 gap. The experimental results provide unambiguous evidences for a new type of proximity effect which follows the phase coherency scenario of proximity induced superconductivity. Specifically, at low temperature, the p-wave spin-triplet condensate with pairing energy \Delta_{tr} is essentially sustained in LSMO but is incapable to display long-range supercurrent response because of a phase-disordering state. The proximity coupling to MgB_2 restores the long-range phase coherency of the triplet superconducting state, which, in turn, enhances superconducting state of the MgB_2.Comment: 10 pages, 6 figure

    Pinholes May Mimic Tunneling

    Full text link
    Interest in magnetic-tunnel junctions has prompted a re-examination of tunneling measurements through thin insulating films. In any study of metal-insulator-metal trilayers, one tries to eliminate the possibility of pinholes (small areas over which the thickness of the insulator goes to zero so that the upper and lower metals of the trilayer make direct contact). Recently, we have presented experimental evidence that ferromagnet-insulator-normal trilayers that appear from current-voltage plots to be pinhole-free may nonetheless in some cases harbor pinholes. Here, we show how pinholes may arise in a simple but realistic model of film deposition and that purely classical conduction through pinholes may mimic one aspect of tunneling, the exponential decay in current with insulating thickness.Comment: 9 pages, 3 figures, plain TeX; submitted to Journal of Applied Physic

    Comment on "Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn5_5"

    Full text link
    Recently, Rourke et al. reported point-contact spectroscopy results on the heavy-fermion superconductor CeCoIn5_5 [1]. They obtained conductance spectra on the c-axis surfaces of CeCoIn5_5 single crystals. Their major claims are two-fold: CeCoIn5_5 has i) d-wave pairing symmetry and ii) two coexisting order parameter components. In this Comment, we show that these claims are not warranted by the data presented. [1] Rourke et al., Phys. Rev. Lett. 94, 107005 (2005).Comment: accepted for publication in Phys. Rev. Lett., final for
    corecore