46 research outputs found

    In Vitro Evidence That Cytokine Receptor Signals Are Required for Differentiation of Double Positive Thymocytes into Functionally Mature CD8+ T Cells

    Get PDF
    CD4+8+ double positive (DP) thymocytes differentiate into CD4+ and CD8+ mature T cells in response to TCR signals. However, TCR signals that are initiated in DP thymocytes are unlikely to persist throughout all subsequent differentiation steps, suggesting that other signals must sustain thymocyte differentiation after TCR signaling has ceased. Using an in vitro experimental system, we now demonstrate that cytokine receptor signals, such as those transduced by IL-7 receptors, are required for differentiation of signaled DP thymocytes into functionally mature CD8+ T cells as they: (a) up-regulate Bcl-2 expression to maintain thymocyte viability; (b) enhance CD4 gene silencing; (c) promote functional maturation;and (d) up-regulate surface expression of glucose transporter molecules, which improve nutrient uptake and increase metabolic activity. IL-7Rs appear to be unique among cytokine receptors in maintaining the viability of newly generated CD4−8+ thymocytes, whereas several different cytokine receptors can provide the trophic/differentiative signals for subsequent CD8+ thymocyte differentiation and maturation. Thus, cytokine receptors provide both survival and trophic/differentiative signals with varying degrees of redundancy that are required for differentiation of signaled DP thymocytes into functionally mature CD8+ T cells

    Lineage Commitment in the Thymus: Only the Most Differentiated (TCRhibcl-2hi) Subset of CD4+CD8+Thymocytes Has Selectively Terminated CD4 or CD8 Synthesis

    Get PDF
    Lineage commitment is a developmental process by which individual CD4+CD8+ (double positive, DP) thymocytes make a decision to differentiate into either CD4+ or CD8+ T cells. However, the molecular event(s) that defines lineage commitment is controversial. We have previously proposed that lineage commitment in DP thymocytes can be molecularly defined as the selective termination of CD4 or CD8 coreceptor synthesis. The present study supports such a molecular definition by showing that termination of either CD4 or CD8 synthesis is a highly regulated event that is only evident within the most differentiated DP subset (CD5hiCD69hiTCRhibcl-2hi). In fact, essentially all cells within this DP subset actively synthesize only one coreceptor molecule. In addition, the present results identify three distinct subpopulations of DP thymocytes that define the developmental progression of the lineage commitment process and demonstrate that lineage commitment is coincident with upregulation of TCR and bcl-2. Thus, this study supports a molecular definition of lineage commitment and uniquely identifies TCRhibcl-2hi DP thymocytes as cells that are already committed to either the CD4 or CD8 T cell lineage

    Positive Selection as a Developmental Progression Initiated by αÎČTCR Signals that Fix TCR Specificity prior to Lineage Commitment

    Get PDF
    AbstractDuring positive selection, immature thymocytes commit to either the CD4+ or CD8+ T cell lineage (“commitment”) and convert from short-lived thymocytes into long-lived T cells (“rescue”). By formal precursor-progeny analysis, we now identify what is likely to be the initial positive selection step signaled by αÎČTCR, which we have termed “induction”. During induction, RAG mRNA expression is downregulated, but lineage commitment does not occur. Rather, lineage commitment (which depends upon the MHC class specificity of the αÎČTCR) only occurs after downregulation of RAG expression and the consequent fixation of αÎČTCR specificity. We propose that positive selection can be viewed as a sequence of increasingly selective developmental steps (induction→commitment→rescue) that are signaled by αÎČTCR engagements of intrathymic ligands

    Lck Availability during Thymic Selection Determines the Recognition Specificity of the T Cell Repertoire

    Get PDF
    SummaryThymic selection requires signaling by the protein tyrosine kinase Lck to generate T cells expressing αÎČ T cell antigen receptors (TCR). For reasons not understood, the thymus selects only αÎČTCR that are restricted by major histocompatibility complex (MHC)-encoded determinants. Here, we report that Lck proteins that were coreceptor associated promoted thymic selection of conventionally MHC-restricted TCR, but Lck proteins that were coreceptor free promoted thymic selection of MHC-independent TCR. Transgenic TCR with MHC-independent specificity for CD155 utilized coreceptor-free Lck to signal thymic selection in the absence of MHC, unlike any transgenic TCR previously described. Thus, the thymus can select either MHC-restricted or MHC-independent αÎČTCR depending on whether Lck is coreceptor associated or coreceptor free. We conclude that the intracellular state of Lck determines the specificity of thymic selection and that Lck association with coreceptor proteins during thymic selection is the mechanism by which MHC restriction is imposed on a randomly generated αÎČTCR repertoire
    corecore