6,302 research outputs found
Notes on Certain (0,2) Correlation Functions
In this paper we shall describe some correlation function computations in
perturbative heterotic strings that, for example, in certain circumstances can
lend themselves to a heterotic generalization of quantum cohomology
calculations. Ordinary quantum chiral rings reflect worldsheet instanton
corrections to correlation functions involving products of Dolbeault cohomology
groups on the target space. The heterotic generalization described here
involves computing worldsheet instanton corrections to correlation functions
defined by products of elements of sheaf cohomology groups. One must not only
compactify moduli spaces of rational curves, but also extend a sheaf
(determined by the gauge bundle) over the compactification, and linear sigma
models provide natural mechanisms for doing both. Euler classes of obstruction
bundles generalize to this language in an interesting way.Comment: 51 pages, LaTeX; v2: typos fixed; v3: more typos fixe
Spectra of D-branes with Higgs vevs
In this paper we continue previous work on counting open string states
between D-branes by considering open strings between D-branes with nonzero
Higgs vevs, and in particular, nilpotent Higgs vevs, as arise, for example,
when studying D-branes in orbifolds. Ordinarily Higgs vevs can be interpreted
as moving the D-brane, but nilpotent Higgs vevs have zero eigenvalues, and so
their interpretation is more interesting -- for example, they often correspond
to nonreduced schemes, which furnishes an important link in understanding old
results relating classical D-brane moduli spaces in orbifolds to Hilbert
schemes, resolutions of quotient spaces, and the McKay correspondence. We give
a sheaf-theoretic description of D-branes with Higgs vevs, including nilpotent
Higgs vevs, and check that description by noting that Ext groups between the
sheaves modelling the D-branes, do in fact correctly count open string states.
In particular, our analysis expands the types of sheaves which admit on-shell
physical interpretations, which is an important step for making derived
categories useful for physics.Comment: 46 pages, LaTeX; v2: typos fixed; v3: more typos fixe
D-branes, B fields, and Ext groups
In this paper we extend previous work on calculating massless boundary Ramond
sector spectra of open strings to include cases with nonzero flat B fields. In
such cases, D-branes are no longer well-modelled precisely by sheaves, but
rather they are replaced by `twisted' sheaves, reflecting the fact that gauge
transformations of the B field act as affine translations of the Chan-Paton
factors. As in previous work, we find that the massless boundary Ramond sector
states are counted by Ext groups -- this time, Ext groups of twisted sheaves.
As before, the computation of BRST cohomology relies on physically realizing
some spectral sequences. Subtleties that cropped up in previous work also
appear here.Comment: 23 pages, LaTeX; v2: typos fixed; v3: reference adde
Quantization of Fayet-Iliopoulos Parameters in Supergravity
In this short note we discuss quantization of the Fayet-Iliopoulos parameter
in supergravity theories. We argue that in supergravity, the Fayet-Iliopoulos
parameter determines a lift of the group action to a line bundle, and such
lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted
in terms of moment maps and symplectic reductions, we argue that in
supergravity the quantization of the Fayet-Iliopoulos parameter has a natural
understanding in terms of linearizations in geometric invariant theory (GIT)
quotients, the algebro-geometric version of symplectic quotients.Comment: 21 pages, utarticle class; v2: typos and tex issue fixe
Chiral corrections to the axial charges of the octet baryons from quenched QCD
We calculate one-loop correction to the axial charges of the octet baryons
using quenched chiral perturbation theory, in order to understand chiral
behavior of the axial charges in quenched approximation to quantum
chromodynamics (QCD). In contrast to regular behavior of the full QCD chiral
perturbation theory result, , we find
that the quenched chiral perturbation theory result,
, is
singular in the chiral limit.Comment: standard LaTeX, 16 pages, 4 epsf figure
Non-birational twisted derived equivalences in abelian GLSMs
In this paper we discuss some examples of abelian gauged linear sigma models
realizing twisted derived equivalences between non-birational spaces, and
realizing geometries in novel fashions. Examples of gauged linear sigma models
with non-birational Kahler phases are a relatively new phenomenon. Most of our
examples involve gauged linear sigma models for complete intersections of
quadric hypersurfaces, though we also discuss some more general cases and their
interpretation. We also propose a more general understanding of the
relationship between Kahler phases of gauged linear sigma models, namely that
they are related by (and realize) Kuznetsov's `homological projective duality.'
Along the way, we shall see how `noncommutative spaces' (in Kontsevich's sense)
are realized physically in gauged linear sigma models, providing examples of
new types of conformal field theories. Throughout, the physical realization of
stacks plays a key role in interpreting physical structures appearing in GLSMs,
and we find that stacks are implicitly much more common in GLSMs than
previously realized.Comment: 54 pages, LaTeX; v2: typo fixe
Cluster decomposition, T-duality, and gerby CFT's
In this paper we study CFT's associated to gerbes. These theories suffer from
a lack of cluster decomposition, but this problem can be resolved: the CFT's
are the same as CFT's for disconnected targets. Such theories also lack cluster
decomposition, but in that form, the lack is manifestly not very problematic.
In particular, we shall see that this matching of CFT's, this duality between
noneffective gaugings and sigma models on disconnected targets, is a worldsheet
duality related to T-duality. We perform a wide variety of tests of this claim,
ranging from checking partition functions at arbitrary genus to D-branes to
mirror symmetry. We also discuss a number of applications of these results,
including predictions for quantum cohomology and Gromov-Witten theory and
additional physical understanding of the geometric Langlands program.Comment: 61 pages, LaTeX; v2,3: typos fixed; v4: writing improved in several
sections; v5: typos fixe
Heavy-Meson Observables at One-Loop in Partially Quenched Chiral Perturbation Theory
I present one-loop level calculations of the Isgur-Wise functions for B ->
D^{(*)} + e + nu, of the matrix elements of isovector twist-2 operators in B
and D mesons, and the matrix elements for the radiative decays D^* -> D + gamma
in partially quenched heavy quark chiral perturbation theory. Such expressions
are required in order to extrapolate from the light quark masses used in
lattice simulations of the foreseeable future to those of nature.Comment: 13 pages, 3 fig
Sums over topological sectors and quantization of Fayet-Iliopoulos parameters
In this paper we discuss quantization of the Fayet-Iliopoulos parameter in
supergravity theories with altered nonperturbative sectors, which were recently
used to argue a fractional quantization condition. Nonlinear sigma models with
altered nonperturbative sectors are the same as nonlinear sigma models on
special stacks known as gerbes. After reviewing the existing results on such
theories in two dimensions, we discuss examples of gerby moduli `spaces'
appearing in four-dimensional field theory and string compactifications, and
the effect of various dualities. We discuss global topological defects arising
when a field or string theory moduli space has a gerbe structure. We also
outline how to generalize results of Bagger-Witten and more recent authors on
quantization issues in supergravities from smooth manifolds to smooth moduli
stacks, focusing particular attention on stacks that have gerbe structures.Comment: 52 pages, LaTeX; v2: typo fixe
Chiral Perturbation Theory for the Quenched Approximation of QCD
[This version is a minor revision of a previously submitted preprint. Only
references have been changed.] We describe a technique for constructing the
effective chiral theory for quenched QCD. The effective theory which results is
a lagrangian one, with a graded symmetry group which mixes Goldstone bosons and
fermions, and with a definite (though slightly peculiar) set of Feynman rules.
The straightforward application of these rules gives automatic cancellation of
diagrams which would arise from virtual quark loops. The techniques are used to
calculate chiral logarithms in , , , and the ratio of
to . The leading
finite-volume corrections to these quantities are also computed. Problems for
future study are described.Comment: 14 page
- …