6,259 research outputs found

    Notes on Certain (0,2) Correlation Functions

    Full text link
    In this paper we shall describe some correlation function computations in perturbative heterotic strings that, for example, in certain circumstances can lend themselves to a heterotic generalization of quantum cohomology calculations. Ordinary quantum chiral rings reflect worldsheet instanton corrections to correlation functions involving products of Dolbeault cohomology groups on the target space. The heterotic generalization described here involves computing worldsheet instanton corrections to correlation functions defined by products of elements of sheaf cohomology groups. One must not only compactify moduli spaces of rational curves, but also extend a sheaf (determined by the gauge bundle) over the compactification, and linear sigma models provide natural mechanisms for doing both. Euler classes of obstruction bundles generalize to this language in an interesting way.Comment: 51 pages, LaTeX; v2: typos fixed; v3: more typos fixe

    Spectra of D-branes with Higgs vevs

    Full text link
    In this paper we continue previous work on counting open string states between D-branes by considering open strings between D-branes with nonzero Higgs vevs, and in particular, nilpotent Higgs vevs, as arise, for example, when studying D-branes in orbifolds. Ordinarily Higgs vevs can be interpreted as moving the D-brane, but nilpotent Higgs vevs have zero eigenvalues, and so their interpretation is more interesting -- for example, they often correspond to nonreduced schemes, which furnishes an important link in understanding old results relating classical D-brane moduli spaces in orbifolds to Hilbert schemes, resolutions of quotient spaces, and the McKay correspondence. We give a sheaf-theoretic description of D-branes with Higgs vevs, including nilpotent Higgs vevs, and check that description by noting that Ext groups between the sheaves modelling the D-branes, do in fact correctly count open string states. In particular, our analysis expands the types of sheaves which admit on-shell physical interpretations, which is an important step for making derived categories useful for physics.Comment: 46 pages, LaTeX; v2: typos fixed; v3: more typos fixe

    D-branes, B fields, and Ext groups

    Get PDF
    In this paper we extend previous work on calculating massless boundary Ramond sector spectra of open strings to include cases with nonzero flat B fields. In such cases, D-branes are no longer well-modelled precisely by sheaves, but rather they are replaced by `twisted' sheaves, reflecting the fact that gauge transformations of the B field act as affine translations of the Chan-Paton factors. As in previous work, we find that the massless boundary Ramond sector states are counted by Ext groups -- this time, Ext groups of twisted sheaves. As before, the computation of BRST cohomology relies on physically realizing some spectral sequences. Subtleties that cropped up in previous work also appear here.Comment: 23 pages, LaTeX; v2: typos fixed; v3: reference adde

    Quantization of Fayet-Iliopoulos Parameters in Supergravity

    Full text link
    In this short note we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories. We argue that in supergravity, the Fayet-Iliopoulos parameter determines a lift of the group action to a line bundle, and such lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted in terms of moment maps and symplectic reductions, we argue that in supergravity the quantization of the Fayet-Iliopoulos parameter has a natural understanding in terms of linearizations in geometric invariant theory (GIT) quotients, the algebro-geometric version of symplectic quotients.Comment: 21 pages, utarticle class; v2: typos and tex issue fixe

    Chiral corrections to the axial charges of the octet baryons from quenched QCD

    Get PDF
    We calculate one-loop correction to the axial charges of the octet baryons using quenched chiral perturbation theory, in order to understand chiral behavior of the axial charges in quenched approximation to quantum chromodynamics (QCD). In contrast to regular behavior of the full QCD chiral perturbation theory result, c0+cl2mπ2lnmπ2+c_0+c_{l2}m_\pi^2\,\ln{m_\pi^2}+\cdots, we find that the quenched chiral perturbation theory result, c0Q+(cl0Q+cl2Qmπ2)lnmπ2+c2Qmπ2+c_0^Q+(c_{l0}^Q+c_{l2}^Qm_\pi^2)\ln{m_\pi^2}+c_2^Q m_\pi^2+\cdots, is singular in the chiral limit.Comment: standard LaTeX, 16 pages, 4 epsf figure

    Non-birational twisted derived equivalences in abelian GLSMs

    Full text link
    In this paper we discuss some examples of abelian gauged linear sigma models realizing twisted derived equivalences between non-birational spaces, and realizing geometries in novel fashions. Examples of gauged linear sigma models with non-birational Kahler phases are a relatively new phenomenon. Most of our examples involve gauged linear sigma models for complete intersections of quadric hypersurfaces, though we also discuss some more general cases and their interpretation. We also propose a more general understanding of the relationship between Kahler phases of gauged linear sigma models, namely that they are related by (and realize) Kuznetsov's `homological projective duality.' Along the way, we shall see how `noncommutative spaces' (in Kontsevich's sense) are realized physically in gauged linear sigma models, providing examples of new types of conformal field theories. Throughout, the physical realization of stacks plays a key role in interpreting physical structures appearing in GLSMs, and we find that stacks are implicitly much more common in GLSMs than previously realized.Comment: 54 pages, LaTeX; v2: typo fixe

    Cluster decomposition, T-duality, and gerby CFT's

    Get PDF
    In this paper we study CFT's associated to gerbes. These theories suffer from a lack of cluster decomposition, but this problem can be resolved: the CFT's are the same as CFT's for disconnected targets. Such theories also lack cluster decomposition, but in that form, the lack is manifestly not very problematic. In particular, we shall see that this matching of CFT's, this duality between noneffective gaugings and sigma models on disconnected targets, is a worldsheet duality related to T-duality. We perform a wide variety of tests of this claim, ranging from checking partition functions at arbitrary genus to D-branes to mirror symmetry. We also discuss a number of applications of these results, including predictions for quantum cohomology and Gromov-Witten theory and additional physical understanding of the geometric Langlands program.Comment: 61 pages, LaTeX; v2,3: typos fixed; v4: writing improved in several sections; v5: typos fixe

    Heavy-Meson Observables at One-Loop in Partially Quenched Chiral Perturbation Theory

    Get PDF
    I present one-loop level calculations of the Isgur-Wise functions for B -> D^{(*)} + e + nu, of the matrix elements of isovector twist-2 operators in B and D mesons, and the matrix elements for the radiative decays D^* -> D + gamma in partially quenched heavy quark chiral perturbation theory. Such expressions are required in order to extrapolate from the light quark masses used in lattice simulations of the foreseeable future to those of nature.Comment: 13 pages, 3 fig

    Sums over topological sectors and quantization of Fayet-Iliopoulos parameters

    Full text link
    In this paper we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories with altered nonperturbative sectors, which were recently used to argue a fractional quantization condition. Nonlinear sigma models with altered nonperturbative sectors are the same as nonlinear sigma models on special stacks known as gerbes. After reviewing the existing results on such theories in two dimensions, we discuss examples of gerby moduli `spaces' appearing in four-dimensional field theory and string compactifications, and the effect of various dualities. We discuss global topological defects arising when a field or string theory moduli space has a gerbe structure. We also outline how to generalize results of Bagger-Witten and more recent authors on quantization issues in supergravities from smooth manifolds to smooth moduli stacks, focusing particular attention on stacks that have gerbe structures.Comment: 52 pages, LaTeX; v2: typo fixe

    Chiral Perturbation Theory for the Quenched Approximation of QCD

    Full text link
    [This version is a minor revision of a previously submitted preprint. Only references have been changed.] We describe a technique for constructing the effective chiral theory for quenched QCD. The effective theory which results is a lagrangian one, with a graded symmetry group which mixes Goldstone bosons and fermions, and with a definite (though slightly peculiar) set of Feynman rules. The straightforward application of these rules gives automatic cancellation of diagrams which would arise from virtual quark loops. The techniques are used to calculate chiral logarithms in fK/fπf_K/f_\pi, mπm_\pi, mKm_K, and the ratio of sˉs\langle{\bar s}s\rangle to uˉu\langle{\bar u}u\rangle. The leading finite-volume corrections to these quantities are also computed. Problems for future study are described.Comment: 14 page
    corecore