262 research outputs found
Top-down etd-ms provides unreliable quantitation of methionine oxidation
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. The aim of this study was to evaluate the total phenolic and flavonoid content, and the in vitro antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, cytotoxicity, and antiprotozoal activities of the Algerian plant Cytisus villosus Pourr. (Syn. Cytisus triflorus L’Hérit.). Additionally, the radioligand displacement affinity on opioid and cannabinoid receptors was assessed for the extracts and isolated pure compounds. The hydro alcoholic extract of the aerial part of C. villosus was partitioned with chloroform (CHCl3), ethyl acetate (EtOAc), and n-butanol (n-BuOH). The phenolic content of the C. villosus extracts was evaluated using a modified Folin–Ciocalteau method. The total flavonoid content was measured spectrometrically using the aluminum chloride colorimetric assay. The known flavonoids genistein (1), chrysin (2), chrysin-7-O-β-d-glucopyranoside (3), and 2”-O-α-l-rhamnosylorientin (4) were isolated. The antioxidant activities of the extracts and isolated compounds were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DDPH) and cellular antioxidant activity (CAA) assays. The plant extracts showed moderate antioxidant activity. EtOAc and n-BuOH extracts showed moderate anti-inflammatory activity through the inhibition of induced nitric oxide synthase (iNOS) with IC50 values of 48 and 90 µg/mL, respectively. The isolated pure compounds 1 and 3 showed good inhibition of Inducible nitric oxide synthase (iNOS) with IC50 values of 9 and 20 µg/mL, respectively. Compounds 1 and 2 exhibited lower inhibition of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) with IC50 values of 28 and 38 µg/mL, respectively. Furthermore, the extracts and isolated pure compounds have been shown to exhibit low affinity for cannabinoid and opioid receptors. Finally, n-BuOH extract was a potent inhibitor of Trypanosoma brucei with IC50 value of 7.99 µg/mL and IC90 value of 12.61 µg/mL. The extracts and isolated compounds showed no antimicrobial, antimalarial nor antileishmanial activities. No cytotoxic effect was observed on cancer cell lines. The results highlight this species as a promising source of anti-inflammatory and antitrypanosomal agents
Recommended from our members
Electronic Health Record-Based Surveillance for Community Transmitted COVID-19 in the Emergency Department
Introduction: SARS-CoV-2, a novel coronavirus, manifests as a respiratory syndrome (COVID-19) and is the cause of an ongoing pandemic. The response to COVID-19 in the United States has been hampered by an overall lack of diagnostic testing capacity. To address uncertainty about ongoing levels of SARS-CoV-2 community transmission early in the pandemic, we aimed to develop a surveillance tool using readily available emergency department (ED) operations data extracted from the electronic health record (EHR). This involved optimizing the identification of acute respiratory infection (ARI)-related encounters and then comparing metrics for these encounters before and after the confirmation of SARS-CoV-2 community transmission.Methods: We performed an observational study using operational EHR data from two Midwest EDs with a combined annual census of over 80,000. Data were collected three weeks before and after the first confirmed case of local SARS-CoV-2 community transmission. To optimize capture of ARI cases, we compared various metrics including chief complaint, discharge diagnoses, and ARI-related orders. Operational metrics for ARI cases, including volume, pathogen identification, and illness severity, were compared between the pre- and post-community transmission timeframes using chi-square tests of independence.Results: Compared to our combined definition of ARI, chief complaint, discharge diagnoses, and isolation orders individually identified less than half of the cases. Respiratory pathogen testing was the top performing individual ARI definition but still only identified 72.2% of cases. From the pre to post periods, we observed significant increases in ED volumes due to ARI and ARI cases without identified pathogen.Conclusion: Certain methods for identifying ARI cases in the ED may be inadequate and multiple criteria should be used to optimize capture. In the absence of widely available SARS-CoV-2 testing, operational metrics for ARI-related encounters, especially the proportion of cases involving negative pathogen testing, are useful indicators for active surveillance of potential COVID-19 related ED visits
An Approach for Separation and Complete Structural Sequencing of Heparin/Heparan Sulfate-like Oligosaccharides
As members of the glycosaminoglycan (GAG) family, heparin and heparan sulfate (HS) are responsible for mediation of a wide range of essential biological actions, most of which are mediated by specific patterns of modifications of regions of these polysaccharides. To fully understand the regulation of HS modification and the biological function of HS through its interactions with protein ligands, it is essential to know the specific HS sequences present. However, the sequencing of mixtures of HS oligosaccharides presents major challenges due to the lability of the sulfate modifications, as well as difficulties in separating isomeric HS chains. Here, we apply a sequential chemical derivatization strategy involving permethylation, desulfation and trideuteroperacetylation to label original sulfation sites with stable and hydrophobic trideuteroacetyl groups. The derivatization chemistry differentiates between all possible heparin/HS sequences solely by glycosidic bond cleavages, without the need to generate cross-ring cleavages. This derivatization strategy combined with LC-MS/MS analysis has been used to separate and sequence five synthetic HS-like oligosaccharides of sizes up to dodecasaccharide, as well as a highly-sulfated Arixtra-like heptamer. This strategy offers a unique capability for the sequencing of microgram quantities of HS oligosaccharide mixtures by LC-MS/MS
Salt-free fractionation of complex isomeric mixtures of glycosaminoglycan oligosaccharides compatible with ESI-MS and microarray analysis
© 2018 Sociedade Brasileira de Farmacognosia The present work investigates the leaf and stem anatomy, chemical composition and insecticidal activities (against Cimex lectularius Linnaeus, 1758) of the volatile oils of Schinus molle L., Anacardiaceae, a Brazilian native traditional medicinal plant. Noteworthy micro-morphological features that can help in the identification and quality control of the species include the presence of isobilateral and amphistomatic leaves, anomocytic and cyclocytic stomata, capitate glandular and conical non-glandular trichomes, large secretory ducts in the midrib, presence of druses and prismatic crystals, and the petiole vascular system comprising of five vascular bundles arranged in U-shape and an additional dorsal bundle. The major components of the volatile oil include β-pinene (14.7%), α-pinene (14.1%), limonene (9.4%) and muurolol (11.8%). Insecticidal activities of the volatile oil against bed bugs were investigated for the first time; strong toxicity by fumigation with the volatile oil of S. molle was observed and reported herein
Structural Analysis of the Glycosylated Intact HIV-1 gp120-b12 Antibody Complex Using Hydroxyl Radical Protein Footprinting
Glycoprotein gp120 is a surface antigen and virulence factor of human immunodeficiency virus 1. Broadly neutralizing antibodies (bNAbs) that react to gp120 from a variety of HIV isolates offer hope for the development of broadly effective immunogens for vaccination purposes, if the interactions between gp120 and bNAbs can be understood. From a structural perspective, gp120 is a particularly difficult system because of its size, the presence of multiple flexible regions, and the large amount of glycosylation, all of which are important in gp120-bNAb interactions. Here, the interaction of full-length, glycosylated gp120 with bNAb b12 is probed using high-resolution hydroxyl radical protein footprinting (HR-HRPF) by fast photochemical oxidation of proteins. HR-HRPF allows for the measurement of changes in the average solvent accessible surface area of multiple amino acids without the need for measures that might alter the protein conformation, such as mutagenesis. HR-HRPF of the gp120-b12 complex coupled with computational modeling shows a novel extensive interaction of the V1/V2 domain, probably with the light chain of b12. Our data also reveal HR-HRPF protection in the C3 domain caused by interaction of the N330 glycan with the b12 light chain. In addition to providing information about the interactions of full-length, glycosylated gp120 with b12, this work serves as a template for the structural interrogation of full-length glycosylated gp120 with other bNAbs to better characterize the interactions that drive the broad specificity of the bNAb
Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99mg/liter, 1.08mg/liter, 1.77mg/liter, and 5.86mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes. IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes
Validated determination of NRG1 Ig-like domain structure by mass spectrometry coupled with computational modeling
High resolution hydroxyl radical protein footprinting (HR-HRPF) is a mass spectrometry-based method that measures the solvent exposure of multiple amino acids in a single experiment, offering constraints for experimentally informed computational modeling. HR-HRPF-based modeling has previously been used to accurately model the structure of proteins of known structure, but the technique has never been used to determine the structure of a protein of unknown structure. Here, we present the use of HR-HRPF-based modeling to determine the structure of the Ig-like domain of NRG1, a protein with no close homolog of known structure. Independent determination of the protein structure by both HR-HRPF-based modeling and heteronuclear NMR was carried out, with results compared only after both processes were complete. The HR-HRPF-based model was highly similar to the lowest energy NMR model, with a backbone RMSD of 1.6 Å. To our knowledge, this is the first use of HR-HRPF-based modeling to determine a previously uncharacterized protein structure
Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO_2/Ni Coatings
Ultrathin dual layers of TiO_2 and Ni have been used to stabilize polycrystalline BiVO_4 photoanodes against photocorrosion in an aqueous alkaline (pH = 13) electrolyte. Conformal, amorphous TiO_2 layers were deposited on BiVO_4 thin films by atomic-layer deposition, with Ni deposited onto the TiO_2 by sputtering. Under simulated air mass 1.5 illumination, the dual-layer coating extended the lifetime of the BiVO4 photoanodes during photoelectrochemical water oxidation from minutes, for bare BiVO4, to hours, for the modified electrodes. X-ray photoelectron spectroscopy showed that these layers imparted chemical stability to the semiconductor/electrolyte interface. Transmission electron microscopy revealed the structure and morphology of the polycrystalline BiVO_4 film as well as of the thin coating layers. This work demonstrates that protection schemes based on ultrathin corrosion-resistant overlayers can be applied beneficially to polycrystalline photoanode materials under conditions relevant to efficient solar-driven water-splitting systems
Genome landscapes and bacteriophage codon usage
Across all kingdoms of biological life, protein-coding genes exhibit unequal
usage of synonmous codons. Although alternative theories abound, translational
selection has been accepted as an important mechanism that shapes the patterns
of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns
of codon usage across 74 diverse bacteriophages that infect E. coli, P.
aeruginosa and L. lactis as their primary host. We introduce the concept of a
`genome landscape,' which helps reveal non-trivial, long-range patterns in
codon usage across a genome. We develop a series of randomization tests that
allow us to interrogate the significance of one aspect of codon usage, such a
GC content, while controlling for another aspect, such as adaptation to
host-preferred codons. We find that 33 phage genomes exhibit highly non-random
patterns in their GC3-content, use of host-preferred codons, or both. We show
that the head and tail proteins of these phages exhibit significant bias
towards host-preferred codons, relative to the non-structural phage proteins.
Our results support the hypothesis of translational selection on viral genes
for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference
Forgiveness-Reconciliation and Communication-Conflict-Resolution Interventions Versus Retested Controls in Early Married Couples
The first 6 months of marriage are optimal for marriage enrichment interventions. The Hope-Focused Approach to couple enrichment was presented as two 9-hr interventions--(a) Handling Our Problems Effectively (HOPE), which emphasized communication and conflict resolution, and (b) Forgiveness and Reconciliation through Experiencing Empathy (FREE). HOPE and FREE were compared with repeated assessment controls. Couples were randomly assigned and were assessed at pretreatment (t1); 1 month posttreatment (t2) and at 3- (t3), 6- (t4), and 12-month (t5) follow-ups using self-reports. In addition to self-report measures, couples were assessed at t1, t2, and t5 using salivary cortisol, and behavioral coding of decision making. Of 179 couples who began the study, 145 cases were analyzed. Both FREE and HOPE produced lasting positive changes on self-reports. For cortisol reactivity, HOPE and FREE reduced reactivity at t2, but only HOPE at t5. For coded behaviors, control couples deteriorated; FREE and HOPE did not change. Enrichment training was effective regardless of the focus of the training
- …