101 research outputs found

    MaxLength considered harmful to the RPKI

    Get PDF
    User convenience and strong security are often at odds, and most security applications need to find some sort of balance between these two (often opposing) goals. The Resource Public Key Infrastructure (RPKI), a security infrastructure built on top of interdomain routing, is not immune to this issue. The RPKI uses the maxLength attribute to reduce the amount of information that must be explicitly recorded in its cryptographic objects. MaxLength also allows operators to easily reconfigure their networks without modifying their RPKI objects. Our network measurements, however, suggest that the maxLength attribute strikes the wrong balance between security and user convenience. We therefore believe that operators should avoid using maxLength. We give operational recommendations and develop software that allow operators to reap many of the benefits of maxLength without its security costs.https://eprint.iacr.org/2016/1015.pdfhttps://eprint.iacr.org/2016/1015.pdfPublished versio

    MODELING THE PHYSICS OF FAILURE FOR ELECTRONIC PACKAGING COMPONENTS SUBJECTED TO THERMAL AND MECHANICAL LOADING

    Get PDF
    This dissertation presents three separate studies that examined electronic components using numerical modeling approaches. The use of modeling techniques provided a deeper understanding of the physical phenomena that contribute to the formation of cracks inside ceramic capacitors, damage inside plated through holes, and to dynamic fracture of MEMS structures. The modeling yielded numerical substantiations for previously proposed theoretical explanations. Multi-Layer Ceramic Capacitors (MLCCs) mounted with stiffer lead-free solder have shown greater tolerance than tin-lead solder for single cycle board bending loads with low strain rates. In contrast, flexible terminations have greater tolerance than stiffer standard terminations under the same conditions. It has been proposed that residual stresses in the capacitor account for this disparity. These stresses have been attributed to the higher solidification temperature of lead free solders coupled with the CTE mismatch between the board and the capacitor ceramic. This research indicated that the higher solidification temperatures affected the residual stresses. Inaccuracies in predicting barrel failures of plated through holes are suspected to arise from neglecting the effects of the reflow process on the copper material. This research used thermo mechanical analysis (TMA) results to model the damage in the copper above the glass transition temperature (Tg) during reflow. Damage estimates from the hysteresis plots were used to improve failure predictions. Modeling was performed to examine the theory that brittle fracture in MEMS structures is not affected by strain rates. Numerical modeling was conducted to predict the probability of dynamic failure caused by shock loads. The models used a quasi-static global gravitational load to predict the probability of brittle fracture. The research presented in this dissertation explored drivers for failure mechanisms in flex cracking of capacitors, barrel failures in plated through holes, and dynamic fracture of MEMS. The studies used numerical modeling to provide new insights into underlying physical phenomena. In each case, theoretical explanations were examined where difficult geometries and complex material properties made it difficult or impossible to obtain direct measurements

    The use of maxLength in the RPKI

    Full text link
    This document recommends that operators avoid using the maxLength attribute when issuing Route Origin Authorizations (ROAs) in the Resource Public Key Infrastructure (RPKI). These recommendations complement those in [RFC7115].https://datatracker.ietf.org/doc/draft-yossigi-rpkimaxlen/First author draf

    Recognizing Facial Slivers

    Get PDF
    We report here an unexpectedly robust ability of healthy human participants (n = 40) to recognize extremely distorted needle-like facial images, challenging the well-entrenched notion that veridical spatial configuration is necessary for extracting facial identity. In face identification tasks of parametrically compressed internal and external features, we found that the sum of performances on each cue falls significantly short of performance on full faces, despite the equal visual information available from both measures (with full faces essentially being a superposition of internal and external features). We hypothesize that this large deficit stems from the use of positional information about how the internal features are positioned relative to the external features. To test this, we systematically changed the relations between internal and external features and found preferential encoding of vertical but not horizontal spatial relationships in facial representations (n = 20). Finally, we employ magnetoencephalography imaging (n = 20) to demonstrate a close mapping between the behavioral psychometric curve and the amplitude of the M250 face familiarity, but not M170 face-sensitive evoked response field component, providing evidence that the M250 can be modulated by faces that are perceptually identifiable, irrespective of extreme distortions to the face's veridical configuration. We theorize that the tolerance to compressive distortions has evolved from the need to recognize faces across varying viewpoints. Our findings help clarify the important, but poorly defined, concept of facial configuration and also enable an association between behavioral performance and previously reported neural correlates of face perception

    Recognizing Facial Slivers

    Get PDF
    We report here an unexpectedly robust ability of healthy human participants (n = 40) to recognize extremely distorted needle-like facial images, challenging the well-entrenched notion that veridical spatial configuration is necessary for extracting facial identity. In face identification tasks of parametrically compressed internal and external features, we found that the sum of performances on each cue falls significantly short of performance on full faces, despite the equal visual information available from both measures (with full faces essentially being a superposition of internal and external features). We hypothesize that this large deficit stems from the use of positional information about how the internal features are positioned relative to the external features. To test this, we systematically changed the relations between internal and external features and found preferential encoding of vertical but not horizontal spatial relationships in facial representations (n = 20). Finally, we employ magnetoencephalography imaging (n = 20) to demonstrate a close mapping between the behavioral psychometric curve and the amplitude of the M250 face familiarity, but not M170 face-sensitive evoked response field component, providing evidence that the M250 can be modulated by faces that are perceptually identifiable, irrespective of extreme distortions to the face's veridical configuration. We theorize that the tolerance to compressive distortions has evolved from the need to recognize faces across varying viewpoints. Our findings help clarify the important, but poorly defined, concept of facial configuration and also enable an association between behavioral performance and previously reported neural correlates of face perception

    Is Robustness To Transformations Driven by Invariant Neural Representations?

    Full text link
    Deep Convolutional Neural Networks (DCNNs) have demonstrated impressive robustness to recognize objects under transformations (e.g. blur or noise) when these transformations are included in the training set. A hypothesis to explain such robustness is that DCNNs develop invariant neural representations that remain unaltered when the image is transformed. Yet, to what extent this hypothesis holds true is an outstanding question, as including transformations in the training set could lead to properties different from invariance, e.g. parts of the network could be specialized to recognize either transformed or non-transformed images. In this paper, we analyze the conditions under which invariance emerges. To do so, we leverage that invariant representations facilitate robustness to transformations for object categories that are not seen transformed during training. Our results with state-of-the-art DCNNs indicate that invariant representations strengthen as the number of transformed categories in the training set is increased. This is much more prominent with local transformations such as blurring and high-pass filtering, compared to geometric transformations such as rotation and thinning, that entail changes in the spatial arrangement of the object. Our results contribute to a better understanding of invariant representations in deep learning, and the conditions under which invariance spontaneously emerges

    Cloning of the koi herpesvirus (KHV) gene encoding thymidine kinase and its use for a highly sensitive PCR based diagnosis

    Get PDF
    BACKGROUND: Outbreaks with mass mortality among common carp Cyprinus carpio carpio and koi Cyprinus carpio koi have occurred worldwide since 1998. The herpes-like virus isolated from diseased fish is different from Herpesvirus cyprini and channel catfish virus and was accordingly designated koi herpesvirus (KHV). Diagnosis of KHV infection based on viral isolation and current PCR assays has a limited sensitivity and therefore new tools for the diagnosis of KHV infections are necessary. RESULTS: A robust and sensitive PCR assay based on a defined gene sequence of KHV was developed to improve the diagnosis of KHV infection. From a KHV genomic library, a hypothetical thymidine kinase gene (TK) was identified, subcloned and expressed as a recombinant protein. Preliminary characterization of the recombinant TK showed that it has a kinase activity using dTTP but not dCTP as a substrate. A PCR assay based on primers selected from the defined DNA sequence of the TK gene was developed and resulted in a 409 bp amplified fragment. The TK based PCR assay did not amplify the DNAs of other fish herpesviruses such as Herpesvirus cyprini (CHV) and the channel catfish virus (CCV). The TK based PCR assay was specific for the detection of KHV and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. The TK based PCR was compared to previously described PCR assays and to viral culture in diseased fish and was shown to be the most sensitive method of diagnosis of KHV infection. CONCLUSION: The TK based PCR assay developed in this work was shown to be specific for the detection of KHV. The TK based PCR assay was more sensitive for the detection of KHV than previously described PCR assays; it was as sensitive as virus isolation which is the golden standard method for KHV diagnosis and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions

    Early Environments Shape Neuropeptide Function: The Case of Oxytocin and Vasopressin

    Get PDF
    Oxytocin (OT) and vasopressin (AVP) are neuropeptides that govern the social-emotional functioning of humans. We contend that to fully understand their function, research should consider how they are flexibly fitted to maximize survival and reproduction given the variety of human experience. In a series of two studies, we show that early life stress is associated with change in the core function of OT and AVP in evolutionary predictable ways: Under high early life stress, AVP promotes threat-detection capabilities, whereas OT motivates non-selective proximity seeking to others. Conversely, under low early life stress these neuropeptides have an opposite, yet adaptive response: AVP promotes low vigilance and preservation of energy, whereas OT increases detection of interpersonal flaws. Our results demonstrate the plasticity of neuropeptide functioning that mirrors the variance in human social-emotional functioning
    • …
    corecore