362 research outputs found

    Associations and clinical relevance of aortic-brachial artery stiffness mismatch, aortic reservoir function, and central pressure augmentation

    Get PDF
    Central augmentation pressure (AP) and index (AIx) predict cardiovascular events and mortality, but underlying physiological mechanisms remain disputed. While traditionally believed to relate to wave reflections arising from proximal arterial impedance (and stiffness) mismatching, recent evidence suggests aortic reservoir function may be a more dominant contributor to AP and AIx. Our aim was therefore to determine relationships among aortic-brachial stiffness mismatching, AP, AIx, aortic reservoir function, and end-organ disease. Aortic (aPWV) and brachial (bPWV) pulse wave velocity were measured in 359 individuals (aged 61 ± 9, 49% male). Central AP, AIx, and aortic reservoir indexes were derived from radial tonometry. Participants were stratified by positive (bPWV > aPWV), negligible (bPWV ≈ aPWV), or negative stiffness mismatch (bPWV < aPWV). Left-ventricular mass index (LVMI) was measured by two-dimensional-echocardiography. Central AP and AIx were higher with negative stiffness mismatch vs. negligible or positive stiffness mismatch (11 ± 6 vs. 10 ± 6 vs. 8 ± 6 mmHg, P < 0.001 and 24 ± 10 vs. 24 ± 11 vs. 21 ± 13%, P = 0.042). Stiffness mismatch (bPWV-aPWV) was negatively associated with AP (r = −0.18, P = 0.001) but not AIx (r = −0.06, P = 0.27). Aortic reservoir pressure strongly correlated to AP (r = 0.81, P < 0.001) and AIx (r = 0.62, P < 0.001) independent of age, sex, heart rate, mean arterial pressure, and height (standardized β = 0.61 and 0.12, P ≤ 0.001). Aortic reservoir pressure independently predicted abnormal LVMI (β = 0.13, P = 0.024). Positive aortic-brachial stiffness mismatch does not result in higher AP or AIx. Aortic reservoir function, rather than discrete wave reflection from proximal arterial stiffness mismatching, provides a better model description of AP and AIx and also has clinical relevance as evidenced by an independent association of aortic reservoir pressure with LVMI

    Associations of blood pressure variability and retinal arteriolar diameter in participants with type 2 diabetes

    Get PDF
    Blood pressure variability is associated with macrovascular complications and stroke, but its association with the microcirculation in type II diabetes has not been assessed. This study aimed to determine the relationship between blood pressure variability indices and retinal arteriolar diameter in non-diabetic and type II diabetes participants. Digitized retinal images were analysed to quantify arteriolar diameters in 35 non-diabetic (aged 52 ± 11 years; 49% male) and 28 type II diabetes (aged 61 ± 9 years; 50% male) participants. Blood pressure variability was derived from 24-h ambulatory blood pressure. Arteriolar diameter was positively associated with daytime rate of systolic blood pressure variation (p = 0.04) among type II diabetes participants and negatively among non-diabetics (p = 0.008; interaction p = 0.001). This finding was maintained after adjusting for age, sex, body mass index and mean daytime systolic blood pressure. These findings suggest that the blood pressure variability-related mechanisms underlying retinal vascular disease may differ between people with and without type II diabetes

    Exploring access to end of life care for ethnic minorities with end stage kidney disease through recruitment in action research

    Get PDF
    BACKGROUND: Variation in provision of palliative care in kidney services and practitioner concerns to provide equitable access led to the development of this study which focussed on the perspectives of South Asian patients and their care providers. As people with a South Asian background experience a higher risk of Type 2 Diabetes (T2DM) and end stage kidney failure (ESKF) compared to the majority population but wait longer for a transplant, there is a need for end of life care to be accessible for this group of patients. Furthermore because non English speakers and people at end of life are often excluded from research there is a dearth of research evidence with which to inform service improvement. This paper aims to explore issues relating to the process of recruitment of patients for a research project which contribute to our understanding of access to end of life care for ethnic minority patients in the kidney setting. METHODS: The study employed an action research methodology with interviews and focus groups to capture and reflect on the process of engaging with South Asian patients about end of life care. Researchers and kidney care clinicians on four NHS sites in the UK recruited South Asian patients with ESKF who were requiring end of life care to take part in individual interviews; and other clinicians who provided care to South Asian kidney patients at end of life to take part in focus groups exploring end of life care issues. In action research planning, action and evaluation are interlinked and data were analysed with emergent themes fed back to care providers through the research cycle. Reflections on the process of patient recruitment generated focus group discussions about access which were analysed thematically and reported here. RESULTS: Sixteen patients were recruited to interview and 45 different care providers took part in 14 focus groups across the sites. The process of recruiting patients to interview and subsequent focus group data highlighted some of the key issues concerning access to end of life care. These were: the identification of patients approaching end of life; and their awareness of end of life care; language barriers and informal carers' roles in mediating communication; and contrasting cultures in end of life kidney care. CONCLUSIONS: Reflection on the process of recruitment in this action research study provided insight into the complex scenario of end of life in kidney care. Some of the emerging issues such as the difficulty identifying patients are likely to be common across all patient groups, whilst others concerning language barriers and third party communication are more specific to ethnic minorities. A focus on South Asian ethnicity contributes to better understanding of patient perspectives and generic concepts as well as access to end of life kidney care for this group of patients in the UK. Action research was a useful methodology for achieving this and for informing future research to include informal carers and other ethnic groups.Peer reviewedFinal Published versio

    Cuff Under Pressure for Greater Accuracy.

    Get PDF
    PURPOSE OF REVIEW: To present the evidence that describes what is being measured by upper-arm cuff blood pressure (BP) and the level of accuracy compared with invasive central aortic and brachial BP. Potential causes of inaccuracy and emerging methods are also discussed. RECENT FINDINGS: On average cuff systolic BP systematically underestimates invasive brachial systolic BP, although in a given individual it may substantially under- or over-estimate central aortic systolic BP. Such errors may affect individual health management outcomes and distort population level data on hypertension prevalence and control. Oscillometric cuff BP is particularly susceptible to inaccuracy in people with high arterial stiffness and with pathophysiological BP waveform shapes. Emerging cuff-less BP methods will be susceptible to inaccuracy if oscillometric cuff BP is used for calibration. The original purpose of cuff BP was to estimate central aortic BP. Recent evidence has shown substantial inaccuracy of oscillometric cuff BP exists for the measurement of invasive central aortic and brachial BP. Thus, development of more accurate BP methods, through better understanding of oscillometric and BP waveform morphology, is needed to improve health outcomes related to high BP

    Physiological and clinical insights from reservoir-excess pressure analysis

    Get PDF
    There is a growing body of evidence indicating that reservoir-excess pressure model parameters provide physiological and clinical insights above and beyond standard blood pressure (BP) and pulse waveform analysis. This information has never been collectively examined and was the aim of this review. Cardiovascular disease is the leading cause of mortality worldwide, with BP as the greatest cardiovascular disease risk factor. However, brachial systolic and diastolic BP provide limited information on the underlying BP waveform, missing important BP-related cardiovascular risk. A comprehensive analysis of the BP waveform is provided by parameters derived via the reservoir-excess pressure model, which include reservoir pressure, excess pressure, and systolic and diastolic rate constants and Pinfinity. These parameters, derived from the arterial BP waveform, provide information on the underlying arterial physiology and ventricular–arterial interactions otherwise missed by conventional BP and waveform indices. Application of the reservoir-excess pressure model in the clinical setting may facilitate a better understanding and earlier identification of cardiovascular dysfunction associated with disease. Indeed, reservoir-excess pressure parameters have been associated with sub-clinical markers of end-organ damage, cardiac and vascular dysfunction, and future cardiovascular events and mortality beyond conventional risk factors. In the future, greater understanding is needed on how the underlying physiology of the reservoir-excess pressure parameters informs cardiovascular disease risk prediction over conventional BP and waveform indices. Additional consideration should be given to the application of the reservoir-excess pressure model in clinical practice using new technologies embedded into conventional BP assessment methods

    Lancet commission on hypertension group position statement on the global improvement of accuracy standards for devices that measure blood pressure

    Get PDF
    The Lancet Commission on Hypertension identified that a key action to address the worldwide burden of high blood pressure (BP) was to improve the quality of BP measurements by using BP devices that have been validated for accuracy. Currently, there are over 3000 commercially available BP devices, but many do not have published data on accuracy testing according to established scientific standards. This problem is enabled through weak or absent regulations that allow clearance of devices for commercial use without formal validation. In addition, new BP technologies have emerged (e.g. cuffless sensors) for which there is no scientific consensus regarding BP measurement accuracy standards. Altogether, these issues contribute to the widespread availability of clinic and home BP devices with limited or uncertain accuracy, leading to inappropriate hypertension diagnosis, management and drug treatment on a global scale. The most significant problems relating to the accuracy of BP devices can be resolved by the regulatory requirement for mandatory independent validation of BP devices according to the universally-accepted International Organisation for Standardization Standard. This is a primary recommendation for which there is an urgent international need. Other key recommendations are development of validation standards specifically for new BP technologies and online lists of accurate devices that are accessible to consumers and health professionals. Recommendations are aligned with WHO policies on medical devices and universal healthcare. Adherence to recommendations would increase the global availability of accurate BP devices and result in better diagnosis and treatment of hypertension, thus decreasing the worldwide burden from high BP

    Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization

    Get PDF
    The original Riva-Rocci method to measure blood pressure (BP) using a cuff at the upper arm assumed the pressure obtained by this technique was a good proxy for central aortic BP.1,2 The clinical (prognostic) importance of brachial cuff BP is undeniable for both the assessment of cardiovascular risk associated with elevated BP and the benefits of treatment-induced BP reduction.3 However, it is also generally appreciated that peripheral artery systolic BP (SBP; brachial or radial artery) may be an inaccurate substitute for central SBP.4 This has been reported in human studies using intra-arterial catheterization of peripheral and central arteries.5–8 There may also be a discrepancy between peripheral and central BP responses to vasoactive drugs.9 These findings are corroborated in larger studies using non-invasive central aortic BP methods,10–13 and, while yet to be fully adopted in clinical practice, an independent prognostic value of central BP has been demonstrated.14–16 Altogether, there is a growing interest among clinicians towards improving risk estimates by using devices that provide more accurate measures of central aortic BP than those provided by current brachial cuff BP methods. Many non-invasive devices have been developed that purport to estimate central BP from different peripheral artery sites (e.g. radial, brachial, carotid arteries) using different principles of recording the pressure or surrogate signals (e.g. applanation tonometry, oscillometry, ultrasound, or magnetic resonance imaging) and different calibration methods to derive central BP. Since upper arm cuff-based devices to estimate central BP are more clinically appealing, in recent years several companies have developed such devices using a variety of techniques (e.g. oscillometric sub-diastolic or supra-systolic waveform analysis with generalized transfer functions), which employ a variety of signal processing steps to estimate central BP from peripheral signals.17,18 Yet, with no standardized guidelines,17 the accuracy testing of these new devices (as well as the preceding devices) has not been undertaken in a uniform fashion with comparable protocols, emphasizing the need for guidance in this field.19–22 An international task force was convened to address this situation

    Cardiorespiratory fitness, fatness, and the acute blood pressure response to exercise in adolescence

    Get PDF
    OBJECTIVE: Exaggerated exercise blood pressure (BP) is associated with cardiovascular risk factors in adolescence. Cardiorespiratory fitness and adiposity (fatness) are independent contributors to cardiovascular risk, but their interrelated associations with exercise BP are unknown. This study aimed to determine the relationships between fitness, fatness and the acute BP response to exercise in a large birth cohort of adolescents. METHODS: 2292 adolescents from the Avon Longitudinal Study of Parents and Children (aged 17.8±0.4 years, 38.5% male) completed a submaximal exercise step-test that allowed fitness (VO2 max ) to be determined from workload and heart rate using a validated equation. Exercise BP was measured immediately on test cessation and fatness calculated as the ratio of total fat mass to total body mass measured by DXA. RESULTS: Post-exercise systolic BP decreased stepwise with tertile of fitness (146 (18); 142 (17); 141 (16) mmHg) but increased with tertile of fatness (138 (15); 142 (16); 149 (18) mmHg). In separate models, fitness and fatness were associated with post-exercise systolic BP adjusted for sex, age, height, smoking and socioeconomic status (standardized β: -1.80, 95%CI: -2.64, -0.95 mmHg/SD and 4.31, 95%CI: 3.49, 5.13 mmHg/SD). However, when fitness and fatness were included in the same model, only fatness remained associated with exercise BP (4.65, 95%CI: 3.69, 5.61 mmHg/SD). CONCLUSION: Both fitness and fatness are associated with the acute BP response to exercise in adolescence. The fitness-exercise BP association was not independent of fatness, implying the cardiovascular protective effects of cardiorespiratory fitness may only be realised with more-favourable body composition
    corecore