2 research outputs found

    A breakthrough in the efficiency of contact DNA insecticides: rapid high mortality rates in the sap-sucking insects Dynaspidiotus britannicus Comstock and Unaspis euonymi Newstead

    No full text
    In this short communication describing experiments carried out on the larvae of two insects, Unaspis euonymi Comstock (feeding on Euonymus japonicus Thunb.) and Dynaspidiotus britannicus Newstead (feeding on Laurus nobilis L.), we evaluate for the first time the efficiency of using DNA insecticides in the control of sap-sucking insects, including armored scale insects. Over a period of 10 days, high insect mortality was detected in both U. euonymi and D. britannicus, accompanied by a significant decrease in the concentration of target RNAs. At the same time, no visible changes were observed when the leaves of the host plants were subjected to treatment with DNA insecticides for one month. The results show the high efficiency of DNA insecticides used against hemipteran insect pests. It is noteworthy that the high efficiency of DNA insecticides and their low cost in comparison with RNA preparations provides a safe and extremely promising potential vehicle for the control of sap-sucking insects

    Oligonucleotide Insecticides for Green Agriculture: Regulatory Role of Contact DNA in Plant–Insect Interactions

    No full text
    Insects vastly outnumber us in terms of species and total biomass, and are among the most efficient and voracious consumers of plants on the planet. As a result, to preserve crops, one of the primary tasks in agriculture has always been the need to control and reduce the number of insect pests. The current use of chemical insecticides leads to the accumulation of xenobiotics in ecosystems and a decreased number of species in those ecosystems, including insects. Sustainable development of human society is impossible without useful insects, so the control of insect pests must be effective and selective at the same time. In this article, we show for the first time a natural way to regulate the number of insect pests based on the use of extracellular double-stranded DNA secreted by the plant Pittosporum tobira. Using a principle similar to one found in nature, we show that the topical application of artificially synthesized short antisense oligonucleotide insecticides (olinscides, DNA insecticides) is an effective and selective way to control the insect Coccus hesperidum. Using contact oligonucleotide insecticide Coccus-11 at a concentration of 100 ng/μL on C. hesperidum larvae resulted in a mortality of 95.59 ± 1.63% within 12 days. Green oligonucleotide insecticides, created by nature and later discovered by humans, demonstrate a new method to control insect pests that is beneficial and safe for macromolecular insect pest management
    corecore