1,548 research outputs found

    Joint Source-Channel Coding over a Fading Multiple Access Channel with Partial Channel State Information

    Full text link
    In this paper we address the problem of transmission of correlated sources over a fast fading multiple access channel (MAC) with partial channel state information available at both the encoders and the decoder. We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). We provide the optimal power allocation strategy and compare the strategy with various levels of channel state information. Keywords: Fading MAC, Power allocation, Partial channel state information, Correlated sources.Comment: 7 Pages, 3 figures. To Appear in IEEE GLOBECOM, 200

    Analysis of Multiple Flows using Different High Speed TCP protocols on a General Network

    Full text link
    We develop analytical tools for performance analysis of multiple TCP flows (which could be using TCP CUBIC, TCP Compound, TCP New Reno) passing through a multi-hop network. We first compute average window size for a single TCP connection (using CUBIC or Compound TCP) under random losses. We then consider two techniques to compute steady state throughput for different TCP flows in a multi-hop network. In the first technique, we approximate the queues as M/G/1 queues. In the second technique, we use an optimization program whose solution approximates the steady state throughput of the different flows. Our results match well with ns2 simulations.Comment: Submitted to Performance Evaluatio

    Asymptotic Approximations for TCP Compound

    Full text link
    In this paper, we derive an approximation for throughput of TCP Compound connections under random losses. Throughput expressions for TCP Compound under a deterministic loss model exist in the literature. These are obtained assuming the window sizes are continuous, i.e., a fluid behaviour is assumed. We validate this model theoretically. We show that under the deterministic loss model, the TCP window evolution for TCP Compound is periodic and is independent of the initial window size. We then consider the case when packets are lost randomly and independently of each other. We discuss Markov chain models to analyze performance of TCP in this scenario. We use insights from the deterministic loss model to get an appropriate scaling for the window size process and show that these scaled processes, indexed by p, the packet error rate, converge to a limit Markov chain process as p goes to 0. We show the existence and uniqueness of the stationary distribution for this limit process. Using the stationary distribution for the limit process, we obtain approximations for throughput, under random losses, for TCP Compound when packet error rates are small. We compare our results with ns2 simulations which show a good match.Comment: Longer version for NCC 201

    Finite Blocklength Rates over a Fading Channel with CSIT and CSIR

    Full text link
    In this work, we obtain lower and upper bounds on the maximal transmission rate at a given codeword length nn, average probability of error ϵ\epsilon and power constraint Pˉ\bar{P}, over a finite valued, block fading additive white Gaussian noise (AWGN) channel with channel state information (CSI) at the transmitter and the receiver. These bounds characterize deviation of the finite blocklength coding rates from the channel capacity which is in turn achieved by the water filling power allocation across time. The bounds obtained also characterize the rate enhancement possible due to the CSI at the transmitter in the finite blocklength regime. The results are further elucidated via numerical examples.Comment: 10 pages, 2 figures, results for finite valued fading states, typos corrected, proofs elaborated, lower bound under short term power constraint improve
    corecore