56,775 research outputs found
Scissors Modes and Spin Excitations in Light Nuclei including =2 excitations: Behaviour of and
Shell model calculations are performed for magnetic dipole excitations in
and in which all valence configurations plus
excitations are allowed (large space). We study both the orbital
and spin excitations. The results are compared with the `valence space only'
calculations (small space). The cumulative energy weighted sums are calculated
and compared for the =0 to =1 excitations in and
for =1 to both =1 and = =2 excitations in
. We find for the =1 to =1 isovector
{\underline {spin}} transitions in that the summed strength in the
{\underline {large}} space is less than in the {\underline {small}} space. We
find that the high energy energy-weighted isovector orbital strength is smaller
than the low energy strength for transitions in which the isospin is changed,
but for =1 to =1 in the high energy strength
is larger. We find that the low lying orbital strength in is
anomalously small, when an attempt is made to correlate it with the
strength to the lowest states. On the other hand a sum rule of Zheng and
Zamick which concerns the total strength is reasonably satisfied in
both and . The Wigner supermultiplet scheme is a useful
guide in analyzing shell model results. In and with a
interaction the T=1 and T=2 scissors modes are degenerate, with the latter
carrying 5/3 of the T=1 strength.Comment: 51 pages, latex, 9 figures available upon reques
The BCS theory of q-deformed nucleon pairs - qBCS
We construct a coherent state of q-deformed zero coupled nucleon pairs
distributed in several single-particle orbits. Using a variational approach,
the set of equations of qBCS theory, to be solved self consistently for
occupation probabilities, gap parameter Delta, and the chemical potential
lambda, is obtained. Results for valence nucleons in nuclear degenerate sdg
major shell show that the strongly coupled zero angular momentum nucleon pairs
can be substituted by weakly coupled q-deformed zero angular momentum nucleon
pairs. A study of Sn isotopes reveals a well defined universe of (G, q) values,
for which qBCS converges. While the qBCS and BCS show similar results for Gap
parameter Delta in Sn isotopes, the ground state energies are lower in qBCS.
The pairing correlations in N nucleon system, increase with increasing q (for q
real).Comment: 8 pages, REVTEX, 3 eps figure
Schr\"{o}dinger cat state of trapped ions in harmonic and anharmonic oscillator traps
We examine the time evolution of a two level ion interacting with a light
field in harmonic oscillator trap and in a trap with anharmonicities. The
anharmonicities of the trap are quantified in terms of the deformation
parameter characterizing the q-analog of the harmonic oscillator trap.
Initially the ion is prepared in a Schr\"{o}dinger cat state. The entanglement
of the center of mass motional states and the internal degrees of freedom of
the ion results in characteristic collapse and revival pattern. We calculate
numerically the population inversion I(t), quasi-probabilities and
partial mutual quantum entropy S(P), for the system as a function of time.
Interestingly, small deformations of the trap enhance the contrast between
population inversion collapse and revival peaks as compared to the zero
deformation case. For \beta =3 and determines the average number
of trap quanta linked to center of mass motion) the best collapse and revival
sequence is obtained for \tau =0.0047 and \tau =0.004 respectively. For large
values of \tau decoherence sets in accompanied by loss of amplitude of
population inversion and for \tau \sim 0.1 the collapse and revival phenomenon
disappear. Each collapse or revival of population inversion is characterized by
a peak in S(P) versus t plot. During the transition from collapse to revival
and vice-versa we have minimum mutual entropy value that is S(P)=0. Successive
revival peaks show a lowering of the local maximum point indicating a
dissipative irreversible change in the ionic state. Improved definition of
collapse and revival pattern as the anharminicity of the trapping potential
increases is also reflected in the Quasi- probability versus t plots.Comment: Revised version, 16 pages,6 figures. Revte
Dissimilarity metric based on local neighboring information and genetic programming for data dissemination in vehicular ad hoc networks (VANETs)
This paper presents a novel dissimilarity metric based on local neighboring information
and a genetic programming approach for efficient data dissemination in Vehicular Ad Hoc Networks
(VANETs). The primary aim of the dissimilarity metric is to replace the Euclidean distance in
probabilistic data dissemination schemes, which use the relative Euclidean distance among vehicles
to determine the retransmission probability. The novel dissimilarity metric is obtained by applying a
metaheuristic genetic programming approach, which provides a formula that maximizes the Pearson
Correlation Coefficient between the novel dissimilarity metric and the Euclidean metric in several
representative VANET scenarios. Findings show that the obtained dissimilarity metric correlates with
the Euclidean distance up to 8.9% better than classical dissimilarity metrics. Moreover, the obtained
dissimilarity metric is evaluated when used in well-known data dissemination schemes, such as
p-persistence, polynomial and irresponsible algorithm. The obtained dissimilarity metric achieves
significant improvements in terms of reachability in comparison with the classical dissimilarity
metrics and the Euclidean metric-based schemes in the studied VANET urban scenarios
- …