50,547 research outputs found

    Borrow from Anywhere: Pseudo Multi-modal Object Detection in Thermal Imagery

    Full text link
    Can we improve detection in the thermal domain by borrowing features from rich domains like visual RGB? In this paper, we propose a pseudo-multimodal object detector trained on natural image domain data to help improve the performance of object detection in thermal images. We assume access to a large-scale dataset in the visual RGB domain and relatively smaller dataset (in terms of instances) in the thermal domain, as is common today. We propose the use of well-known image-to-image translation frameworks to generate pseudo-RGB equivalents of a given thermal image and then use a multi-modal architecture for object detection in the thermal image. We show that our framework outperforms existing benchmarks without the explicit need for paired training examples from the two domains. We also show that our framework has the ability to learn with less data from thermal domain when using our approach. Our code and pre-trained models are made available at https://github.com/tdchaitanya/MMTODComment: Accepted at Perception Beyond Visible Spectrum Workshop, CVPR 201

    Lattice Energies and Thermal Expansions of Some Heavier Halides

    Get PDF

    Isospin Dependence of the Spin-Orbit Force and Effective Nuclear Potentials,

    Full text link
    The isospin dependence of the spin-orbit potential is investigated for an effective Skyrme-like energy functional suitable for density dependent Hartree-Fock calculations. The magnitude of the isospin dependence is obtained from a fit to experimental data on finite spherical nuclei. It is found to be close to that of relativistic Hartree models. Consequently, the anomalous kink in the isotope shifts of Pb nuclei is well reproduced.Comment: Revised, 11 pages (Revtex) and 2 figures available upon request, Preprint MPA-833, Physical Review Letters (in press)

    Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight

    Get PDF
    Viruses are widely recognized as the primary cause of infectious diseases around the world. The ongoing global pandemic due to the emergence of SARS-CoV-2 further added fuel to the fire. The development of therapeutics becomes very difficult as viruses can mutate their genome to become more complex and resistant. Medicinal plants and phytocompounds could be alternative options. Isoquinoline and their related alkaloids are naturally occurring compounds that interfere with multiple pathways including nuclear factor-κB, mitogen-activated protein kinase/extracellular-signal-regulated kinase, and inhibition of Ca²⁺-mediated fusion. These pathways play a crucial role in viral replication. Thus, the major goal of this study is to comprehend the function of various isoquinoline and related alkaloids in viral infections by examining their potential mechanisms of action, structure-activity relationships (SAR), in silico (particularly for SARS-CoV-2), in vitro and in vivo studies. The current advancements in isoquinoline and related alkaloids as discussed in the present review could facilitate an in-depth understanding of their role in the drug discovery process
    corecore