53 research outputs found

    Physical Learning Environment Challenges in the Digital Divide: How to Design Effective Instruction during COVID-19?

    Get PDF
    The coronavirus disease of 2019 (COVID-19) pandemic has changed the way we work, learn, and interact with others in society. Academic institutions have responded to the pandemic by shifting face-to-face teaching to online instruction. However, whether online instruction succeeds also depends on students’ social and physical learning environment, particularly in developing countries. In this paper, we discuss how learning space challenges exacerbate the digital divide. We argue that weak digital infrastructure, combined with family and social dynamics, create learning space inequality that negatively influence learning outcomes. We provide recommendations on how academic institutions can reimagine content delivery, evaluation, and student support to mitigate learning space inequalities

    A Hierarchical Framework of Challenges for Blockchain Adoption in Public Services. Implications for decision-makers

    Get PDF
    This study attempts to identify critical challenges for blockchain adoption in government, particularly public-service delivery in India, a developing country context. Through an extensive literature review and focus-group discussions with policymakers and blockchain experts, we have identified 12 adoption challenges for Blockchain in public service delivery. We then collected data and analysed using interpretive structural modeling and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC) Analysis to develop a hierarchical framework of the challenges. Our findings indicate that governments must first ensure legislative support for blockchain-based transactions. This research contributes to information systems strategic planning literature and provides a framework for policymakers to craft a strategic approach to facilitate blockchain adoption

    Inter-state cross border superspreading event of SARS-CoV2 in Central India, May 2020

    Get PDF
    Background: During the mid-weeks of May 2020, a superspreading event occurred in a town of Central India, where breaking bread together led to an outburst of COVID-19 cases. This led to a sudden increase of the daily average number of cases later on in the month.Methods: An epidemiological investigation was done to investigate the cause. Process of the epidemic investigation done has been described under three parts namely - Case finding, Contact tracing, Public health response.Results: Our epidemiological investigation and contact tracing of the index case confirmed a superspreading event of COVID-19 which occurred due to multiple social gatherings during mid weeks of May 2020. It was estimated that 118 cases belonged to G0 and 94 cases belonged to G1 generation of the index case.Conclusions: Most likely source of infection to the index case was from the guests who came for a social gathering on May 11, 2020 (lockdown 3) from a village across the border in Rajasthan, a high COVID-19 prevalent zone (Orange) to a low COVID-19 prevalent zone (Green)

    Predicting the impact of climate change on range and genetic diversity patterns of the endangered endemic Nilgiri tahr (Nilgiritragus hylocrius) in the western Ghats, India

    Get PDF
    [Context] Climate change is considered an important factor affecting the distribution and genetic diversity of species. While many studies have described the influence of climate change on population structure at various scales, little is known about the genetic consequences of a changing climate on endemic species.[Objectives] To assess possible changes in the distribution and genetic structure of the endangered Nilgiri tahr (Nilgiritragus hylocrius), which is endemic to the Western Ghats in India, under climate change and human disturbances.[Methods] We integrated tahr occurrence and nuclear DNA data with environmental geo-datasets to project the response of tahr populations to future climate change with respect to its distribution, genetic diversity and population structure. We screened the environmental variables using MaxEnt to identify a manageable set of predictors to be used in an ensemble approach, based on ten species distribution modelling techniques, to quantify the current tahr distribution. We then projected the distribution and genetic structure under two climate change scenarios.[Results] We found that suitable habitat for tahr (9,605 km2) is determined predominantly by a combination of climatic, human disturbance and topographic factors that result in a highly fragmented habitat throughout its distribution range in the Western Ghats. Under the severe high emissions RCP8.5 scenario tahr populations may lose more than half of their available habitat (55.5%) by 2070. Application of spatial Bayesian clustering suggests that their current genetic structure comprise four genetic clusters, with three of them reflecting a clear geographic structure. However, under climate change, two of these clusters may be lost, and in the future a homogenization of the genetic background of the remaining populations may arise due to prevalence of one gene pool cluster in the remaining populations.[Conclusions] Our interdisciplinary approach that combines niche modelling and genetic data identified the climate refugia (i.e., the remaining stable habitats that overlap with the current suitable areas), where the tahr populations would be restricted to small, isolated and fragmented areas. Essential factors to avert local extinctions of vulnerable tahr populations are a reduction of human disturbances, dispersal of tahr between fragmented populations, and the availability of corridors.This research was supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India, and by a German Research Foundation (DFG) fellowship awarded to RK (project number 273837911).Peer reviewe

    Establishment of the mechanism of purification and levigation of green chemistry-assisted biocomposites of red ochre (Gairika): synthesis, characterization, and antibacterial, prebiotic, antioxidant, and antacid activities of the traditional Ayurvedic medicine Laghu Sutashekhara Rasa

    Get PDF
    Gairika (red ochre) has a long history of influencing human civilization. Gairika is a rich source of nutrients used for reproductive and brain health. Gairika is mentioned as an antacid drug in Indian Ayurvedic medicine under Laghu Sutashekhara Rasa (LSR). However, a detailed study on LSR has not been reported to date. In the present study, LSR was prepared, and a pharmaceutical SOP (standardization procedure) was reported to obtain batch-to-batch reproducibility. LSR was characterized using FTIR, XRD, SEM-EDX, and TGA analyses. LSR was tested in vitro for its antacid activity. Advanced instrumentation revealed that LSR formation produced symmetrical particles (5–8 µm) with kaolin, kaolinite, quartz, goethite, and hematite, along with the phytoconstituents of Goghrita (clarified cow’s butter), Shunthi, and Nagawalli, as confirmed by GC-MS/MS analysis. The FTIR study revealed the formation of a chelating complex of goethite and hematite along with their phytoconstituents. XRD analysis confirmed the presence of kaolin, kaolinite, quartz, goethite, and hematite. Using in vitro antacid experiments, LSR and Shunthi demonstrated significant antacid activity as compared to antacid drugs and standards in the market, such as CaCO3. The DPPH assay revealed IC50 values of 12.16 ± 1.23 mg/mL, which is 0.0029 of Trolox-equivalent antioxidant activity. The inhibition (18 ± 4 mm) against pathogens (S. aureus, E. coli, P. aeruginosa, and B. subtilis) and the prominent growth of gut microbiota-supported strains (S. boulardii, L. paracasei, and L. plantarum) observed on LSR formulation were indicative of LSR application as a prebiotic. Here, the mechanism of purification and levigation mentioned in the classical literature of LSR was established. Overall, purification of Gairika with cow ghee and levigation with Nagawalli may enhance the solubility, bioavailability, and shelf-life of LSR through hydration and co-crystallization mechanisms. This is the first comprehensive report on the pharmaceutical validation of LSR and its characterization. The results of the present study could contribute to the development and reliable reproduction of LSR and the utility of environmental red ochre as a medicine in combination with Shunthi (Zingiber officinale Roxb.), as prescribed under Indian Ayurvedic medicine

    Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India

    Get PDF
    Delhi, the national capital of India, experienced multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in 2020 and reached population seropositivity of >50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant, B.1.617.2 (Delta), replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and reduced sensitivity to immune responses generated against earlier variants (median estimates: 1.5-fold greater transmissibility and 20% reduction in sensitivity). Seropositivity of an employee and family cohort increased from 42% to 87.5% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after a previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi

    Tigers of Sundarbans in India: Is the Population a Separate Conservation Unit?

    Get PDF
    The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.Wildlife Institute of India, Dehra Dun (India)

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era
    corecore