609 research outputs found

    Physical Learning Environment Challenges in the Digital Divide: How to Design Effective Instruction during COVID-19?

    Get PDF
    The coronavirus disease of 2019 (COVID-19) pandemic has changed the way we work, learn, and interact with others in society. Academic institutions have responded to the pandemic by shifting face-to-face teaching to online instruction. However, whether online instruction succeeds also depends on students’ social and physical learning environment, particularly in developing countries. In this paper, we discuss how learning space challenges exacerbate the digital divide. We argue that weak digital infrastructure, combined with family and social dynamics, create learning space inequality that negatively influence learning outcomes. We provide recommendations on how academic institutions can reimagine content delivery, evaluation, and student support to mitigate learning space inequalities

    Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    Get PDF
    Highly luminescent Ag-ion-doped Cd1−xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation

    An ex vivo salivary lubrication system to mimic xerostomic conditions and to predict the lubricating properties of xerostomia relieving agents

    Get PDF
    Advances in medical research has resulted in successful treatment of many life-threatening infectious diseases as well as autoimmune and lifestyle-related diseases, increasing life-expectancy of both the developed and developing world. As a result of a growing ageing population, the focus has also turned on chronic diseases which seriously affect the quality of older patient life. Xerostomia (dry mouth) is one such condition, which leads to bad oral health and difficulty in consumption of dry foods and speech. Saliva substitutes are used to ease symptoms. However, they often don't work properly and objective comparison of saliva substitutes to mimic natural salivary functions does not exist. The study thus aims to develop an ex vivo friction assay simulating dry mouth conditions and facilitating objective comparison of saliva substitutes. A reciprocating sliding tongue-enamel system was developed and compared to a PDMS (polydimethylsiloxane)-PDMS friction system. The tongue-enamel system, but not the PDMS-PDMS model, showed high mucin-containing saliva (unstimulated and submandibular/sublingual saliva) to give higher Relief than mucin-poor lubricants (water, parotid saliva, Dentaid Xeros) and correlated well (r = 0.97) with in vivo mouth feel. The tongue-enamel friction system mimicked dry mouth conditions and relief and seems suited to test agents meant to lubricate desiccated oral surfaces

    Cartilage lamina splendens inspired nanostructured coating for biomaterial lubrication

    Get PDF
    Biomaterials that are used in biological systems, such as polycarbonate urethane (PCU) knee joint implants and contact lenses, generally lack lubrication. This limits their integration with the body and impedes their function. Here, we propose a nanostructured film based on hydrophilic polysaccharide hyaluronic acid conjugated with dopamine (HADN) and zwitterionic reduced glutathione (Glu), which forms a composite coating (HADN-Glu) to enhance the lubrication between cartilage and PCU. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine and deposited on PCU surface under mild oxidative conditions. Then, zwitterionic peptide-reduced glutathione was bioconjugated to HADN, forming a lubrication film. Analysis based on X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and wettability indicated that HADN and Glu had grafted successfully onto the PCU surface. Measurements of the coefficient of friction (COF), friction energy dissipation and cartilage roughness indicated that cartilage was effectively protected by the high lubrication of HADN-Glu. Both at low and high applied loads, this effect was likely due to the enhanced boundary lubrication enabled by HADN-Glu on the PCU surface. Moreover, HADN-Glu is highly biocompatible with chondrocyte cells, suggesting that this film will benefit the design of implants where lubrication is needed

    Dopamine-conjugated hyaluronic acid delivered via intra-articular injection provides articular cartilage lubrication and protection

    Get PDF
    Due to its high molecular weight and viscosity, hyaluronic acid (HA) is widely used for viscosupplemen-tation to provide joint pain relief in osteoarthritis. However, this benefit is temporary due to poor adhe-sion of HA on articular surfaces. In this study, we therefore conjugated HA with dopamine to form HADN, which made the HA adhesive while retaining its viscosity enhancement capacity. We hypothesized that HADN could enhance cartilage lubrication through adsorption onto the exposed collagen type II network and repair the lamina splendens. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine. Analysis of Magnetic Resonance (NMR) and Ultraviolet spectrophotometry (Uv-vis) showed that HADN was successfully synthesized. Adsorption of HADN on collagen was demonstrated using Quartz crystal microbalance with dissipation (QCM-D). Ex vivo tribological tests including measure-ment of coefficient of friction (COF), dynamic creep, in stance (40 N) and swing (4 N) phases of gait cycle indicated adequate protection of cartilage by HADN with higher lubrication compared to HA alone. HADN solution at the cartilage-glass sliding interface not only retains the same viscosity as HA and provides fluid film lubrication, but also ensures better boundary lubrication through adsorption. To confirm the cartilage surface protection of HADN, we visualized cartilage wear using optical coherence tomography (OCT) and atomic force microscopy (AFM).(c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/)
    • …
    corecore