328 research outputs found
On Distributed Power Control for Uncoordinated Dual Energy Harvesting Links: Performance Bounds and Near-Optimal Policies
In this paper, we consider a point-to-point link between an energy harvesting
transmitter and receiver, where neither node has the information about the
battery state or energy availability at the other node. We consider a model
where data is successfully delivered only in slots where both nodes are active.
Energy loss occurs whenever one node turns on while the other node is in sleep
mode. In each slot, based on their own energy availability, the transmitter and
receiver need to independently decide whether or not to turn on, with the aim
of maximizing the long-term time-average throughput. We present an upper bound
on the throughput achievable by analyzing a genie-aided system that has
noncausal knowledge of the energy arrivals at both the nodes. Next, we propose
an online policy requiring an occasional one-bit feedback whose throughput is
within one bit of the upper bound, asymptotically in the battery size. In order
to further reduce the feedback required, we propose a time-dilated version of
the online policy. As the time dilation gets large, this policy does not
require any feedback and achieves the upper bound asymptotically in the battery
size. Inspired by this, we also propose a near-optimal fully uncoordinated
policy. We use Monte Carlo simulations to validate our theoretical results and
illustrate the performance of the proposed policies.Comment: 8 page
- …