1 research outputs found

    Enhancing the Productivity of Field Crops through Nano-Fertilizer

    Get PDF
    The growth of agricultural sectors can be maintained by increasing crop productivity through soil, water, and nutrient management. The most important management practice is nutrient management, which is supported by the effective use of nano-technology, especially nano-fertilizers. It is well known that nano-fertilizers are nutrient carriers of nano dimensions ranging from 30 to 40 nm (10−9 m or one-billionth of a meter). Due to their high surface area, they can hold abundant nutrients ions and release them slowly and steadily, commensurate with crop demand. Nano-fertilizers are easily uptaken and assimilated by the plants because of their ease of solubility, stability, controlled release in time, and easy mode of delivery and disposal. Due to nano fertilizers characteristics, different commercial products are available in the market, namely Nanogro, Geohumus, NanoGreen, and Lithovit High Yield fertilizer, which can be demonstrated among the farmers for increasing agricultural performance through soil and nutrient management. Besides, nano-fertilizer has good criteria like disease resistance properties. Nanoparticles of ZnO, CuO, and MgO can kill different fungal infections of crop plants. Though nano-fertilizers can be beneficial for improving agricultural performance, it has a detrimental effect on soil microflora, fauna, animals, and humans. It is associated with several diseases or hazards like high blood pressure, blood clots, stroke, arrhythmia, heart disease, etc. Nano-fertilizer also improves the yield of several field crops like pearl millet, wheat, pomegranate, onion, tomato, soybean, and vegetable crops like spinach and cucumber. Nano fertilizers also have sound capabilities to find the solution against the issues arising in modern agriculture due to conventional fertilizer application. Thus, nano-fertilizer has the potential to improve the yield of several field crops
    corecore