3 research outputs found

    A Novel Deep Learning-Based Mitosis Recognition Approach and Dataset for Uterine Leiomyosarcoma Histopathology

    No full text
    Uterine leiomyosarcoma (ULMS) is the most common sarcoma of the uterus, It is aggressive and has poor prognosis. Its diagnosis is sometimes challenging owing to its resemblance by benign smooth muscle neoplasms of the uterus. Pathologists diagnose and grade leiomyosarcoma based on three standard criteria (i.e., mitosis count, necrosis, and nuclear atypia). Among these, mitosis count is the most important and challenging biomarker. In general, pathologists use the traditional manual counting method for the detection and counting of mitosis. This procedure is very time-consuming, tedious, and subjective. To overcome these challenges, artificial intelligence (AI) based methods have been developed that automatically detect mitosis. In this paper, we propose a new ULMS dataset and an AI-based approach for mitosis detection. We collected our dataset from a local medical facility in collaboration with highly trained pathologists. Preprocessing and annotations are performed using standard procedures, and a deep learning-based method is applied to provide baseline accuracies. The experimental results showed 0.7462 precision, 0.8981 recall, and 0.8151 F1-score. For research and development, the code and dataset have been made publicly available

    Investigating the Effects of Climate and Land Use Changes on Rawal Dam Reservoir Operations and Hydrological Behavior

    No full text
    In order to assess the effects of climate change and land use change on Rawal Dam, a major supply of water for Rawalpindi and Islamabad, this study uses hydrological modeling at the watershed scale. The HEC-HMS model was used to simulate the hydrological response in the Rawal Dam catchment to historical precipitation. The calibrated model was then used to determine how changes in land use and climate had an impact on reservoir inflows. The model divided the Rawal Dam watershed into six sub-basins, each with unique features, and covered the entire reservoir’s catchment area using data from three climatic stations (Murree, Islamabad Zero Point and Rawal Dam). For the time spans of 2003–2005 and 2006–2007, the model was calibrated and verified, respectively. An excellent fit between the observed and predicted flows was provided by the model. The GCM (MPI-ESM1-2-HR) produced estimates of temperature and precipitation under two Shared Socioeconomic Pathways (SSP2 and SSP5) after statistical downscaling with the CMhyd model. To evaluate potential effects of climate change and land use change on Rawal Dam, these projections, along with future circumstances for land use and land cover, were fed to the calibrated model. The analysis was carried out on a seasonal basis over the baseline period (1990–2015) and over future time horizon (2016–2100), which covers the present century. The findings point to a rise in precipitation for both SSPs, which is anticipated to result in an increase in inflows throughout the year. SSP2 projected a 15% increase in precipitation across the Rawal Dam catchment region until the end of the twenty-first century, while SSP5 forecasted a 17% increase. It was determined that higher flows are to be anticipated in the future. The calibrated model can also be utilized successfully for future hydrological impact assessments on the reservoir, it was discovered

    Multiscale Ground Validation of Satellite and Reanalysis Precipitation Products over Diverse Climatic and Topographic Conditions

    No full text
    The validity of two reanalysis (ERA5 and MEERA2) and seven satellite-based (CHIRPS, IMERG, PERSIANN-CCS, PERSIANN-CDR, PERSIANN-PDIR, PERSIANN, and TRMM) precipitation products was assessed in relation to the observations of in situ weather stations installed in different topographical and climatic regions of Pakistan. From 2010 to 2018, all precipitation products were evaluated on daily, monthly, seasonal, and annual bases at a point-to-pixel scale and over the entire spatial domain. The accuracy of the products was evaluated using commonly used evaluation and categorical indices, including Root Mean Square Error (RMSE), Correlation Coefficient (CC), Bias, Relative Bias (rBias), Critical Success Index (CSI), Success Ratio (SR) Probability of Detection (POD), and False Alarm Ratio (FAR). The results show that: (1) Over the entire country, the spatio-temporal distribution of observed precipitation could be represented by IMERG and TRMM products. (2) All products (reanalysis and SPPs) demonstrated good agreement with the reference data at the monthly scale compared to the daily data (CC > 0.7 at monthly scale). (3) All other products were outperformed by IMERG and TRMM in terms of their capacity to detect precipitation events throughout the year, regardless of the season (i.e., winter, spring, summer, and autumn). Furthermore, both products (IMERG and TRMM) consistently depicted the incidence of precipitation events across Pakistan’s various topography and climatic regimes. (4) Generally, CHIRPS and ERA5 products showed moderate performances in the plan areas. PERSIANN, PERSIANN-CCS, PDIR, PERSIANN-CDR, and MEERA2 products were uncertain to detect the occurrence and precipitation over the higher intensities and altitudes. Considering the finding of this assessment, we recommend the use of daily and monthly estimates of the IMERG product for hydro climatic studies in Pakistan
    corecore