11 research outputs found

    Ultrahigh Energy Neutrinos

    Get PDF
    The ultrahigh energy neutrino cross section is well understood in the standard model for neutrino energies up to 1012^{12} GeV. Test of neutrino oscillations (νμ↔ντ\nu_\mu\leftrightarrow\nu_\tau) from extragalactic sources of neutrinos are possible with large underground detectors. Measurments of horizontal air shower event rates at neutrino energies above 1010^{10} GeV will be able to constrain nonstandard model contributions to the neutrino-nucleon cross section, e.g., from mini-black hole production.Comment: 7 pages, presented at Neutrinos and Implications for Physics Beyond the Standard Model, Stony Brook, NY, October 11-13, 200

    High Energy Neutrino Signals of Four Neutrino Mixing

    Full text link
    We evaluate the upward shower and muon event rates for two characteristic four neutrino mixing models for extragalactic neutrinos, as well as for the atmospheric neutrinos, with energy thresholds of 1 TeV, 10 TeV and 100 TeV. We show that by comparing the shower to muon event rates, one can distinguish between oscillation and no-oscillation models. By measuring shower and muon event rates for energy thresholds of 10 TeV and 100 TeV, and by considering their ratio, it is possible to use extragalactic neutrino sources to determine the type of four-flavor mixing pattern. We find that one to ten years of data taking with kilometer-size detector has a very good chance of providing valuable information about the physics beyond the Standard Model.Comment: version accepted for publication in Phys. Rev.

    Differential Neutrino Rates and Emissivities from the Plasma Process in Astrophysical Systems

    Full text link
    The differential rates and emissivities of neutrino pairs from an equilibrium plasma are calculated for the wide range of density and temperature encountered in astrophysical systems. New analytical expressions are derived for the differential emissivities which yield total emissivities in full agreement with those previously calculated. The photon and plasmon pair production and absorption kernels in the source term of the Boltzmann equation for neutrino transport are provided. The appropriate Legendre coefficients of these kernels, in forms suitable for multi-group flux-limited diffusion schemes are also computed.Comment: 27 pages and 10 figures. Submitted to Phys. Rev.

    The photo-neutrino process in astrophysical systems

    Full text link
    Explicit expressions for the differential and total rates and emissivities of neutrino pairs from the photo-neutrino process e±+γ→e±+ν+νˉe^\pm + \gamma \to e^\pm + \nu + \bar\nu in hot and dense matter are derived. Full information about the emitted neutrinos is retained by evaluating the squared matrix elements for this process which was hitherto bypassed through the use of Lenard's identity in obtaining the total neutrino emissivities. Accurate numerical results are presented for widely varying conditions of temperature and density. Analytical results helpful in understanding the qualitative behaviors of the rates and emissivities in limiting situations are derived. The corresponding production and absorption kernels in the source term of the Boltzmann equation for neutrino transport are developed. The appropriate Legendre coefficients of these kernels, in forms suitable for multigroup flux-limited diffusion schemes are also provided.Comment: 26 pages and 7 figures. Version as accepted in Phys. Rev. D; three figures and related discussion revise

    On Black Hole Detection with the OWL/Airwatch Telescope

    Full text link
    In scenarios with large extra dimensions and TeV scale gravity ultrahigh energy neutrinos produce black holes in their interactions with the nucleons. We show that ICECUBE and OWL may observe large number of black hole events and provide valuable information about the fundamental Planck scale and the number of extra dimensions. OWL is especially well suited to observe black hole events produced by neutrinos from the interactions of cosmic rays with the 3 K background radiation. Depending on the parameters of the scenario of large extra dimensions and on the flux model, as many as 28 events per year are expected for a Planck scale of 3 TeV.Comment: 8 pages, including 7 color figures, three figure captions corrected, minor changes for clarification, one reference adde

    Tau Neutrinos Underground: Signals of νμ→ντ\nu_\mu \to \nu_\tau Oscillations with Extragalactic Neutrinos

    Full text link
    The appearance of high energy tau neutrinos due to νμ→ντ\nu_\mu \to \nu_\tau oscillations of extragalactic neutrinos can be observed by measuring the neutrino induced upward hadronic and electromagnetic showers and upward muons. We evaluate quantitatively the tau neutrino regeneration in the Earth for a variety of extragalactic neutrino fluxes. Charged-current interactions of the upward tau neutrinos below and in the detector, and the subsequent tau decay create muons or hadronic and electromagnetic showers. The background for these events are muon neutrino and electron neutrino charged-current and neutral-current interactions, where in addition to extragalactic neutrinos, we consider atmospheric neutrinos. We find significant signal to background ratios for the hadronic/electromagnetic showers with energies above 10 TeV to 100 TeV initiated by the extragalactic neutrinos. We show that the tau neutrinos from point sources also have the potential for discovery above a 1 TeV threshold. A kilometer-size neutrino telescope has a very good chance of detecting the appearance of tau neutrinos when both muon and hadronic/electromagnetic showers are detected.Comment: section added and two new figs; accepted for publication in Physical Review
    corecore