94 research outputs found

    RLIP76, a non-ABC transporter, and drug resistance in epilepsy

    Get PDF
    BACKGROUND: Permeability of the blood-brain barrier is one of the factors determining the bioavailability of therapeutic drugs and resistance to chemically different antiepileptic drugs is a consequence of decreased intracerebral accumulation. The ABC transporters, particularly P-glycoprotein, are known to play a role in antiepileptic drug extrusion, but are not by themselves sufficient to fully explain the phenomenon of drug-resistant epilepsy. Proteomic analyses of membrane protein differentially expressed in epileptic foci brain tissue revealed the frequently increased expression of RLIP76/RALBP1, a recently described non-ABC multi-specific transporter. Because of a significant overlap in substrates between P-glycoprotein and RLIP76, present studies were carried out to determine the potential role of RLIP76 in AED transport in the brain. RESULTS: RLIP76 was expressed in brain tissue, preferentially in the lumenal surface of endothelial cell membranes. The expression was most prominent in blood brain barrier tissue from excised epileptic foci. Saturable, energy-dependent, anti-gradient transport of both phenytoin and carbamazepine were demonstrated using recombinant RLIP76 reconstituted into artificial membrane liposomes. Immunotitration studies of transport activity in crude membrane vesicles prepared from whole-brain tissue endothelium showed that RLIP76 represented the dominant transport mechanism for both drugs. RLIP76(-/- )knockout mice exhibited dramatic toxicity upon phenytoin administration due to decreased drug extrusion mechanisms at the blood-brain barrier. CONCLUSION: We conclude that RLIP76 is the predominant transporter of AED in the blood brain barrier, and that it may be a transporter involved in mechanisms of drug-resistant epilepsy

    RLIP76, a Glutathione-Conjugate Transporter, Plays a Major Role in the Pathogenesis of Metabolic Syndrome

    Get PDF
    PURPOSE: Characteristic hypoglycemia, hypotriglyceridemia, hypocholesterolemia, lower body mass, and fat as well as pronounced insulin-sensitivity of RLIP76⁻/⁻ mice suggested to us the possibility that elevation of RLIP76 in response to stress could itself elicit metabolic syndrome (MSy). Indeed, if it were required for MSy, drugs used to treat MSy should have no effect on RLIP76⁻/⁻ mice. RESEARCH DESIGN AND METHODS: Blood glucose (BG) and lipid measurements were performed in RLIP76⁺/⁺ and RLIP76⁻/⁻ mice, using Ascensia Elite Glucometer® for glucose and ID Labs kits for cholesterol and triglycerides assays. The ultimate effectors of gluconeogenesis are the three enzymes: PEPCK, F-1,6-BPase, and G6Pase, and their expression is regulated by PPARγ and AMPK. The activity of these enzymes was tested by protocols standardized by us. Expressions of RLIP76, PPARα, PPARγ, HMGCR, pJNK, pAkt, and AMPK were performed by Western-blot and tissue staining. RESULTS: The concomitant activation of AMPK and PPARγ by inhibiting transport activity of RLIP76, despite inhibited activity of key glucocorticoid-regulated hepatic gluconeogenic enzymes like PEPCK, G6Pase and F-1,6-BP in RLIP76⁻/⁻ mice, is a salient finding of our studies. The decrease in RLIP76 protein expression by rosiglitazone and metformin is associated with an up-regulation of PPARγ and AMPK. CONCLUSIONS/SIGNIFICANCE: All four drugs, rosiglitazone, metformin, gemfibrozil and atorvastatin failed to affect glucose and lipid metabolism in RLIP76⁻/⁻ mice. Studies confirmed a model in which RLIP76 plays a central role in the pathogenesis of MSy and RLIP76 loss causes profound and global alterations of MSy signaling functions. RLIP76 is a novel target for single-molecule therapeutics for metabolic syndrome

    Developing Information Technology Solutions in Indian Languages: Pros and Cons

    Get PDF
    A very large part of the content in our country is in various local languages. Language is a barrier to get the full advantage of this knowledge. In order to remove the language barrier, computer and IT solutions can play a major role. It is needed to create a system of multilingual content knowledge base so that it can serve all-regional community requirements. However this is not an easy task as there are various technological hurdles and lack of commitment. Commercial companies are not interested in developing such solutions, as there is no such big market in doing that. This paper gives an insight about developing the local language solutions and it’s pros and cons. It also discusses about the initiatives taken by the government and its supported organisatons

    COH-SR4 reduces body weight, improves glycemic control and prevents hepatic steatosis in high fat diet-induced obese mice.

    Get PDF
    Obesity is a chronic metabolic disorder caused by imbalance between energy intake and expenditure, and is one of the principal causative factors in the development of metabolic syndrome, diabetes and cancer. COH-SR4 ("SR4") is a novel investigational compound that has anti-cancer and anti-adipogenic properties. In this study, the effects of SR4 on metabolic alterations in high fat diet (HFD)-induced obese C57BL/J6 mice were investigated. Oral feeding of SR4 (5 mg/kg body weight.) in HFD mice for 6 weeks significantly reduced body weight, prevented hyperlipidemia and improved glycemic control without affecting food intake. These changes were associated with marked decreases in epididymal fat mass, adipocyte hypertrophy, increased plasma adiponectin and reduced leptin levels. SR4 treatment also decreased liver triglycerides, prevented hepatic steatosis, and normalized liver enzymes. Western blots demonstrated increased AMPK activation in liver and adipose tissues of SR4-treated HFD obese mice, while gene analyses by real time PCR showed COH-SR4 significantly suppressed the mRNA expression of lipogenic genes such as sterol regulatory element binding protein-1c (Srebf1), acetyl-Coenzyme A carboxylase (Acaca), peroxisome proliferator-activated receptor gamma (Pparg), fatty acid synthase (Fasn), stearoyl-Coenzyme A desaturase 1 (Scd1), carnitine palmitoyltransferase 1a (Cpt1a) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr), as well as gluconeogenic genes phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc) in the liver of obese mice. In vitro, SR4 activates AMPK independent of upstream kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Together, these data suggest that SR4, a novel AMPK activator, may be a promising therapeutic compound for treatment of obesity, fatty liver disease, and related metabolic disorders
    corecore