2 research outputs found

    Gold nanoparticle-based colorimetric biosensors

    Get PDF
    Gold nanoparticles (AuNPs) provide excellent platforms for the development of colorimetric biosensors as they can be easily functionalised, displaying different colours depending on their size, shape and state of aggregation. In the last decade, a variety of biosensors have been developed to exploit the extent of colour changes as nano-particles (NPs) either aggregate or disperse, in the presence of analytes. Of critical importance to the design of these methods is that the behaviour of the systems has to be reproducible and predictable. Much has been accomplished in understanding the interactions between a variety of substrates and AuNPs, and how these interactions can be harnessed as colorimetric reporters in biosensors. However, despite these developments, only a few biosensors have been used in practice for the detection of analytes in biological samples. The transition from proof of concept to market biosensors requires extensive long-term reliability and shelf life testing, and modification of protocols and design features to make them safe and easy to use by the population at large. Developments in the next decade will see the adoption of user friendly biosensors for point-of-care and medical diagnosis as innovations are brought to improve the analytical performances and usability of the current designs. This review discusses the mechanisms, strategies, recent advances and perspectives for the use of AuNPs as colorimetric biosensors. Keywords: biosensors, colloids, gold nanoparticles, nanotechnology, surface plasmon resonance, enzymes, quantification

    Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore.

    No full text
    To test the hypothesis that elemental composition of otoliths (sagittae) could be influenced by differences in natural prey type, young-of-the-year bluefish Pomatomus saltatrix were captured immediately after their migration from oceanic waters into mid-Atlantic Bight estuaries and fed either shrimp, Crangon septemspinosa and Palaemonetes spp. or fish Menidia menidia under similar temperature and salinity regimes in two separate 60 day experiments. Unlimited rations of fish and shrimp prey were provided in the first experiment which led to differences in bluefish growth rate between the two prey treatments; fish prey was limited in the second experiment to ensure that growth rates of bluefish in the two prey treatments were similar. Concentrations of seven elements in bluefish otoliths were determined using solution-based inductively coupled plasma mass spectrometry (ICPMS). There was no significant effect of diet on five of the seven elements examined (Na, Mg, K, Ca and Mn). The levels of Sr and Ba in the otoliths of shrimp-fed bluefish, however, were significantly higher than fish-fed bluefish in both experiments. Concentrations of Ba in shrimp-fed bluefish otoliths were double that found in fish-fed bluefish. The results suggest that diet can explain some of the variation in otolith chemistry previously attributed to physical and chemical properties of the water
    corecore