1,046 research outputs found

    Type Ia Single Degenerate Survivors Must Be Overluminous

    Full text link
    In the single-degenerate (SD) channel of a Type Ia supernovae (SN Ia) explosion, a main-sequence (MS) donor star survives the explosion but it is stripped of mass and shock heated. An essentially unavoidable consequence of mass loss during the explosion is that the companion must have an overextended envelope after the explosion. While this has been noted previously, it has not been strongly emphasized as an inevitable consequence. We calculate the future evolution of the companion by injecting 2-6 10^47 ergs into the stellar evolution model of a 1 Msun donor star based on the post-explosion progenitors seen in simulations. We find that, due to the Kelvin-Helmholtz collapse of the envelope, the companion must become significantly more luminous (10 - 10^3 Lsun) for a long period of time (10^3 - 10^4 years). The lack of such a luminous "leftover" star in the LMC supernova remnant SNR 0609-67.5 provides another piece of evidence against the SD scenario. We also show that none of the stars proposed as the survivors of the Tycho supernova, including Tycho G, could plausibly be the donor star. Additionally, luminous donors closer than ~10 Mpc should be observable with the Hubble Space Telescope starting ~2 years post-peak. Such systems include SN 1937C, SN 1972E, SN 1986G, and SN 2011fe. Thus, the SD channel is already ruled out for at least two nearby SNe Ia and can be easily tested for a number of additional ones. We also discuss similar implications for the companions of core-collapse SNe.Comment: 22 pages, 5 figures. Accepted to ApJ. For a brief video explaining this paper, see http://youtu.be/MycQn5BPKm

    Detections and Constraints on White Dwarf Variability from Time-Series GALEX Observations

    Full text link
    We search for photometric variability in more than 23,000 known and candidate white dwarfs, the largest ultraviolet survey compiled for a single study of white dwarfs. We use gPhoton, a publicly available calibration/reduction pipeline, to generate time-series photometry of white dwarfs observed by GALEX. By implementing a system of weighted metrics, we select sources with variability due to pulsations and eclipses. Although GALEX observations have short baselines (< 30 min), we identify intrinsic variability in sources as faint as Gaia G = 20 mag. With our ranking algorithm, we identify 49 new variable white dwarfs (WDs) in archival GALEX observations. We detect 41 new pulsators: 37 have hydrogen-dominated atmospheres (DAVs), including one possible massive DAV, and four are helium-dominated pulsators (DBVs). We also detect eight new eclipsing systems; five are new discoveries, and three were previously known spectroscopic binaries. We perform synthetic injections of the light curve of WD 1145+017, a system with known transiting debris, to test our ability to recover similar systems. We find that the 3{\sigma} maximum occurrence rate of WD 1145+017-like transiting objects is < 0.5%.Comment: 17 pages, 13 figure

    The Mid-Infrared and Optical Decay of SN 2011fe

    Full text link
    We measure the decay rate of the mid-IR luminosity from type Ia supernova 2011fe between six months and one year after explosion using Spitzer/IRAC observations. The fading in the 3.6 micron channel is 1.48+/-0.02 mag/100d, which is similar to that seen in blue optical bands. The supernova brightness fades at 0.78+/-0.02 mag/100d in the 4.5 micron channel which is close to that observed in the near-IR. We argue that the difference is a result of doubly ionized iron-peak elements dominating the bluer IRAC band while singly ionized species are controlling the longer wavelength channel. To test this, we use Large Binocular Telescope spectra taken during the same phases to show that doubly ionized emission lines do fade more slowly than their singly ionized cousins. We also find that [Co III] emission fades at more than twice the radioactive decay rate due to the combination of decreasing excitation in the nebula, recombination and cobalt decaying to iron. The nebular emission velocities of [Fe III] and [Co III] lines show a smaller blue-shift than emission from singly ionized atoms. The Si II velocity gradient near maximum light combined with our nebular velocity measurements suggest SN 2011fe was a typical member of the `low velocity gradient' class of type Ia. Analyzing IRAC photometry from other supernovae we find that mid-IR color of type Ia events is correlated with the early light curve width and can be used as an indicator of the radioactive nickel yield.Comment: 11 pages, 6 figures, 3 table

    No trace of a single-degenerate companion in late spectra of SNe 2011fe and 2014J

    Full text link
    Left-over, ablated material from a possible non-degenerate companion can reveal itself after about one year in spectra of Type Ia SNe (SNe Ia). We have searched for such material in spectra of SN 2011fe (at 294 days after the explosion) and for SN 2014J (315 days past explosion). The observations are compared with numerical models simulating the expected line emission. The spectral lines sought for are H-alpha, [O I] 6300 and [Ca II] 7291,7324, and the expected width of these lines is about 1000 km/s. No signs of these lines can be traced in any of the two supernovae. When systematic uncertainties are included, the limits on hydrogen-rich ablated gas in SNe 2011fe and 2014J are 0.003 M_sun and 0.0085 M_sun, respectively, where the limit for SN 2014J is the second lowest ever, and the limit for SN 2011fe is a revision of a previous limit. Limits are also put on helium-rich ablated gas. These limits are used, in conjunction with other data, to argue that these supernovae can stem from double-degenerate systems, or from single-degenerate systems with a spun up/spun down super-Chandrasekhar white dwarf. For SN 2011fe, other types of hydrogen-rich donors can likely be ruled out, whereas for SN 2014J a main-sequence donor system with large intrinsic separation is still possible. Helium-rich donor systems cannot be ruled out for any of the two supernovae, but the expected short delay time for such progenitors makes this possibility less likely, especially for SN 2011fe. The broad [Ni II] 7378 emission in SN 2014J is redshifted by about +1300 km/s, as opposed to the known blueshift of roughly -1100 km/s for SN 2011fe. [Fe II] 7155 is also redshifted in SN 2014J. SN 2014J belongs to a minority of SNe Ia that both have a nebular redshift of [Fe II] 7155 and [Ni II] 7378, and a slow decline of the Si II 6355 absorption trough just after B-band maximum.Comment: 13 pages, submitted to A&

    Optical observations of the luminous Type IIn Supernova 2010jl for over 900 days

    Get PDF
    The luminous Type IIn Supernova (SN) 2010jl shows strong evidence for the interaction of the SN ejecta with dense circumstellar material (CSM). We present observations of SN 2010jl for t900t \sim 900 d after its earliest detection, including a sequence of optical spectra ranging from t=55t = 55 to 909909 d. We also supplement our late time spectra and the photometric measurements in the literature with an additional epoch of new, late time BVRIBVRI photometry. Combining available photometric and spectroscopic data, we derive a semi-bolometric optical light curve and calculate a total radiated energy in the optical for SN 2010jl of 3.5×1050\sim 3.5\times10^{50} erg. We also examine the evolution of the Hα\alpha emission line profile in detail and find evidence for asymmetry in the profile for t775t \gtrsim 775 d that is not easily explained by any of the proposed scenarios for this fascinating event. Finally, we discuss the interpretations from the literature of the optical and near-infrared light curves, and propose that the most likely explanation of their evolution is the formation of new dust in the dense, pre-existing CSM wind after 300\sim 300 d.Comment: 14 pages, 10 figures, 5 tables. Full version of Table 3 is included as an ancillary fil

    AGN Type-casting: Mrk 590 No Longer Fits the Role

    Full text link
    We present multi-wavelength observations that trace more than 40 years in the life of the active galactic nucleus (AGN) in Mrk 590, traditionally known as a classic Seyfert 1 galaxy. From spectra recently obtained from HST, Chandra, and the Large Binocular Telescope, we find that the activity in the nucleus of Mrk 590 has diminished so significantly that the continuum luminosity is a factor of 100 lower than the peak luminosity probed by our long baseline observations. Furthermore, the broad emission lines, once prominent in the UV/optical spectrum, have all but disappeared. Since AGN type is defined by the presence of broad emission lines in the optical spectrum, our observations demonstrate that Mrk 590 has now become a "changing look" AGN. If classified by recent optical spectra, Mrk 590 would be a Seyfert ~1.9-2, where the only broad emission line still visible in the optical spectrum is a weak component of Halpha. As an additional consequence of this change, we have definitively detected UV narrow-line components in a Type 1 AGN, allowing an analysis of these emission-line components with high-resolution COS spectra. These observations challenge the historical paradigm that AGN type is only a consequence of the line of sight viewing angle toward the nucleus in the presence of a geometrically-flattened, obscuring medium (i.e., the torus). Our data instead suggest that the current state of Mrk 590 is a consequence of the change in luminosity, which implies the black hole accretion rate has significantly decreased.Comment: Accepted for publication in the Astrophysical Journal. This version includes minor modifications to the text and one figure in response to suggestions from the anonymous referee and members of the communit

    The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    Full text link
    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working towards imaging the entire visible sky every night to a depth of V~17 mag. The present data covers the sky and spans ~2-5~years with ~100-400 epochs of observation. The data should contain some ~1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.Comment: 8 pages, 9 figures, submitted to PAS
    corecore