15,316 research outputs found

    Dark energy: a quantum fossil from the inflationary Universe?

    Full text link
    The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically-free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term whose variation follows a power law of the redshift.Comment: LaTeX, 14 pages, extended discussion. References added. Accepted in J. Phys. A: Mathematical and Theoretica

    Phase-conjugate optical coherence tomography

    Get PDF
    Quantum optical coherence tomography (Q-OCT) offers a factor-of-two improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the non-classical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT), introduced here, shows that non-classical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross-correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT.Comment: 4 pages, 3 figure

    Cosmology with variable parameters and effective equation of state for Dark Energy

    Full text link
    A cosmological constant, Lambda, is the most natural candidate to explain the origin of the dark energy (DE) component in the Universe. However, due to experimental evidence that the equation of state (EOS) of the DE could be evolving with time/redshift (including the possibility that it might behave phantom-like near our time) has led theorists to emphasize that there might be a dynamical field (or some suitable combination of them) that could explain the behavior of the DE. While this is of course one possibility, here we show that there is no imperative need to invoke such dynamical fields and that a variable cosmological constant (including perhaps a variable Newton's constant too) may account in a natural way for all these features.Comment: LaTeX, 9 pages, 1 figure. Talk given at the 7th Intern. Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05

    Gaussian-State Theory of Two-Photon Imaging

    Full text link
    Biphoton states of signal and idler fields--obtained from spontaneous parametric downconversion (SPDC) in the low-brightness, low-flux regime--have been utilized in several quantum imaging configurations to exceed the resolution performance of conventional imagers that employ coherent-state or thermal light. Recent work--using the full Gaussian-state description of SPDC--has shown that the same resolution performance seen in quantum optical coherence tomography and the same imaging characteristics found in quantum ghost imaging can be realized by classical-state imagers that make use of phase-sensitive cross correlations. This paper extends the Gaussian-state analysis to two additional biphoton-state quantum imaging scenarios: far field diffraction-pattern imaging; and broadband thin-lens imaging. It is shown that the spatial resolution behavior in both cases is controlled by the nonzero phase-sensitive cross correlation between the signal and idler fields. Thus, the same resolution can be achieved in these two configurations with classical-state signal and idler fields possessing a nonzero phase-sensitive cross correlation.Comment: 14 pages, 5 figure

    Signal-to-noise ratio of Gaussian-state ghost imaging

    Full text link
    The signal-to-noise ratios (SNRs) of three Gaussian-state ghost imaging configurations--distinguished by the nature of their light sources--are derived. Two use classical-state light, specifically a joint signal-reference field state that has either the maximum phase-insensitive or the maximum phase-sensitive cross correlation consistent with having a proper PP representation. The third uses nonclassical light, in particular an entangled signal-reference field state with the maximum phase-sensitive cross correlation permitted by quantum mechanics. Analytic SNR expressions are developed for the near-field and far-field regimes, within which simple asymptotic approximations are presented for low-brightness and high-brightness sources. A high-brightness thermal-state (classical phase-insensitive state) source will typically achieve a higher SNR than a biphoton-state (low-brightness, low-flux limit of the entangled-state) source, when all other system parameters are equal for the two systems. With high efficiency photon-number resolving detectors, a low-brightness, high-flux entangled-state source may achieve a higher SNR than that obtained with a high-brightness thermal-state source.Comment: 12 pages, 4 figures. This version incorporates additional references and a new analysis of the nonclassical case that, for the first time, includes the complete transition to the classical signal-to-noise ratio asymptote at high source brightnes

    Radar studies of the planets

    Get PDF
    The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted
    • …
    corecore