15,918 research outputs found

    Cosmologies with variable parameters and dynamical cosmon: implications on the cosmic coincidence problem

    Get PDF
    Dynamical dark energy (DE) has been proposed to explain various aspects of the cosmological constant (CC) problem(s). For example, it is very difficult to accept that a strictly constant Lambda-term constitutes the ultimate explanation for the DE in our Universe. It is also hard to acquiesce in the idea that we accidentally happen to live in an epoch where the CC contributes an energy density value right in the ballpark of the rapidly diluting matter density. It should perhaps be more plausible to conceive that the vacuum energy, is actually a dynamical quantity as the Universe itself. More generally, we could even entertain the possibility that the total DE is in fact a mixture of vacuum energy and other dynamical components (e.g. fields, higher order terms in the effective action etc) which can be represented collectively by an effective entity X (dubbed the ``cosmon''). The ``cosmon'', therefore, acts as a dynamical DE component different from the vacuum energy. While it can actually behave phantom-like by itself, the overall DE fluid may effectively appear as standard quintessence, or even mimic at present an almost exact CC behavior. Thanks to the versatility of such cosmic fluid we can show that a composite DE system of this sort (``LXCDM'') may have a key to resolving the mysterious coincidence problem.Comment: LaTeX, 13 pages, 5 figure

    Dark energy: a quantum fossil from the inflationary Universe?

    Full text link
    The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically-free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term whose variation follows a power law of the redshift.Comment: LaTeX, 14 pages, extended discussion. References added. Accepted in J. Phys. A: Mathematical and Theoretica

    Phase-conjugate optical coherence tomography

    Get PDF
    Quantum optical coherence tomography (Q-OCT) offers a factor-of-two improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the non-classical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT), introduced here, shows that non-classical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross-correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT.Comment: 4 pages, 3 figure

    A Four-Dimensional Theory for Quantum Gravity with Conformal and Nonconformal Explicit Solutions

    Get PDF
    The most general version of a renormalizable d=4d=4 theory corresponding to a dimensionless higher-derivative scalar field model in curved spacetime is explored. The classical action of the theory contains 1212 independent functions, which are the generalized coupling constants of the theory. We calculate the one-loop beta functions and then consider the conditions for finiteness. The set of exact solutions of power type is proven to consist of precisely three conformal and three nonconformal solutions, given by remarkably simple (albeit nontrivial) functions that we obtain explicitly. The finiteness of the conformal theory indicates the absence of a conformal anomaly in the finite sector. The stability of the finite solutions is investigated and the possibility of renormalization group flows is discussed as well as several physical applications.Comment: LaTeX, 18 pages, no figure

    Quantum corrections to gravity and their implications for cosmology and astrophysics

    Full text link
    The quantum contributions to the gravitational action are relatively easy to calculate in the higher derivative sector of the theory. However, the applications to the post-inflationary cosmology and astrophysics require the corrections to the Einstein-Hilbert action and to the cosmological constant, and those we can not derive yet in a consistent and safe way. At the same time, if we assume that these quantum terms are covariant and that they have relevant magnitude, their functional form can be defined up to a single free parameter, which can be defined on the phenomenological basis. It turns out that the quantum correction may lead, in principle, to surprisingly strong and interesting effects in astrophysics and cosmology.Comment: 15 pages, LaTeX, WS style, contribution to the Proceedings of the QFEXT-2011 conference in the Centro de Ciencias de Benasque Pedro Pasqual, Spai

    Cosmology with variable parameters and effective equation of state for Dark Energy

    Full text link
    A cosmological constant, Lambda, is the most natural candidate to explain the origin of the dark energy (DE) component in the Universe. However, due to experimental evidence that the equation of state (EOS) of the DE could be evolving with time/redshift (including the possibility that it might behave phantom-like near our time) has led theorists to emphasize that there might be a dynamical field (or some suitable combination of them) that could explain the behavior of the DE. While this is of course one possibility, here we show that there is no imperative need to invoke such dynamical fields and that a variable cosmological constant (including perhaps a variable Newton's constant too) may account in a natural way for all these features.Comment: LaTeX, 9 pages, 1 figure. Talk given at the 7th Intern. Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05

    Gaussian-State Theory of Two-Photon Imaging

    Full text link
    Biphoton states of signal and idler fields--obtained from spontaneous parametric downconversion (SPDC) in the low-brightness, low-flux regime--have been utilized in several quantum imaging configurations to exceed the resolution performance of conventional imagers that employ coherent-state or thermal light. Recent work--using the full Gaussian-state description of SPDC--has shown that the same resolution performance seen in quantum optical coherence tomography and the same imaging characteristics found in quantum ghost imaging can be realized by classical-state imagers that make use of phase-sensitive cross correlations. This paper extends the Gaussian-state analysis to two additional biphoton-state quantum imaging scenarios: far field diffraction-pattern imaging; and broadband thin-lens imaging. It is shown that the spatial resolution behavior in both cases is controlled by the nonzero phase-sensitive cross correlation between the signal and idler fields. Thus, the same resolution can be achieved in these two configurations with classical-state signal and idler fields possessing a nonzero phase-sensitive cross correlation.Comment: 14 pages, 5 figure

    Nonlinear dynamics of beta induced Alfv\'en eigenmode driven by energetic particles

    Full text link
    Nonlinear saturation of beta induced Alfv\'en eigenmode, driven by slowing down energetic particles via transit resonance, is investigated by the nonlinear hybrid magnetohyrodynamic gyro-kinetic code (XHMGC). Saturation is characterized by frequency chirping and symmetry breaking between co- and counter-passing particles, which can be understood as the the evidence of resonance-detuning. The scaling of the saturation amplitude with the growth rate is also demonstrated to be consistent with radial resonance detuning due to the radial non-uniformity and mode structure

    Resonances in one-dimensional Disordered Chain

    Full text link
    We study the average density of resonances, ,inasemi−infinitedisorderedchaincoupledtoaperfectlead.Thefunction, in a semi-infinite disordered chain coupled to a perfect lead. The function is defined in the complex energy plane and the distance yy from the real axes determines the resonance width. We concentrate on strong disorder and derive the asymptotic behavior of in the limit of small yy.Comment: latex, 1 eps figure, 9 pages; v2 - final version, published in the JPhysA Special Issue Dedicated to the Physics of Non-Hermitian Operator
    • 

    corecore