134 research outputs found
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy
We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic cardiomyopathy reversed many of the phenotypical features. Attenuation of Na/K-ATPase oxidant amplification may be a potential strategy for clinical therapy of this disorder
Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae
The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacteria populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated twelve major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan-genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of eleven populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation
Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity
The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-Γ -brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. Β© 2013 Rogers et al
High body mass index is not associated with atopy in schoolchildren living in rural and urban areas of Ghana
<p>Abstract</p> <p>Background</p> <p>Factors which determine the development of atopy and the observed rural-urban gradient in its prevalence are not fully understood. High body mass index (BMI) has been associated with asthma and potentially atopy in industrialized countries. In developing countries, the transition from rural to urban areas has been associated with lifestyle changes and an increased prevalence of high BMI; however, the effect of high BMI on atopy remains unknown in this population. We therefore investigated the association between high BMI and atopy among schoolchildren living in rural and urban areas of Ghana.</p> <p>Methods</p> <p>Data on skin prick testing, anthropometric, parasitological, demographic and lifestyle information for 1,482 schoolchildren aged 6-15 years was collected. Atopy was defined as sensitization to at least one tested allergen whilst the Centres for Disease Control and Prevention (CDC, Atlanta) growth reference charts were used in defining high BMI as BMI β₯ the 85<sup>th </sup>percentile. Logistic regression was performed to investigate the association between high BMI and atopy whilst adjusting for potential confounding factors.</p> <p>Results</p> <p>The following prevalences were observed for high BMI [Rural: 16%, Urban: 10.8%, p < 0.001] and atopy [Rural: 25.1%, Urban: 17.8%, p < 0.001]. High BMI was not associated with atopy; but an inverse association was observed between underweight and atopy [OR: 0.57, 95% CI: 0.33-0.99]. Significant associations were also observed with male sex [Rural: OR: 1.49, 95% CI: 1.06-2.08; Urban: OR: 1.90, 95% CI: 1.30-2.79], and in the urban site with older age [OR: 1.76, 95% CI: 1.00-3.07], family history of asthma [OR: 1.58, 95% CI: 1.01-2.47] and occupational status of parent [OR: 0.33, 95% CI: 0.12-0.93]; whilst co-infection with intestinal parasites [OR: 2.47, 95% CI: 1.01-6.04] was associated with atopy in the rural site. After multivariate adjustment, male sex, older age and family history of asthma remained significant.</p> <p>Conclusions</p> <p>In Ghanaian schoolchildren, high BMI was not associated with atopy. Further studies are warranted to clarify the relationship between body weight and atopy in children subjected to rapid life-style changes associated with urbanization of their environments.</p
Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)
Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems
Diurnal Rhythms in Neurexins Transcripts and Inhibitory/Excitatory Synapse Scaffold Proteins in the Biological Clock
The neurexin genes (NRXN1/2/3) encode two families (Ξ± and Ξ²) of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3Ξ± expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4). Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN) act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3Ξ± expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3Ξ± expression and SS#3/SS#4 splicing, levels of neurexin-2Ξ± and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively) were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1Ξ± and mNRXN2Ξ± transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2Ξ± levels were found in the SCN in vivo. No such rhythms were found with mNRXN3Ξ±. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2Ξ± levels. rNRXN3Ξ± and rNRXN1/2Ξ² were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2Ξ± SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2Ξ± and postsynaptic scaffolding proteins in SCN across the 24-h cycle. NRXNs gene transcripts may have a role in coupling the circadian clock to diurnal rhythms in excitatory/inhibitory synaptic balance
Pervasive Hitchhiking at Coding and Regulatory Sites in Humans
Much effort and interest have focused on assessing the importance of natural
selection, particularly positive natural selection, in shaping the human genome.
Although scans for positive selection have identified candidate loci that may be
associated with positive selection in humans, such scans do not indicate whether
adaptation is frequent in general in humans. Studies based on the reasoning of
the MacDonaldβKreitman test, which, in principle, can be used to
evaluate the extent of positive selection, suggested that adaptation is
detectable in the human genome but that it is less common than in Drosophila or
Escherichia coli. Both positive and purifying natural
selection at functional sites should affect levels and patterns of polymorphism
at linked nonfunctional sites. Here, we search for these effects by analyzing
patterns of neutral polymorphism in humans in relation to the rates of
recombination, functional density, and functional divergence with chimpanzees.
We find that the levels of neutral polymorphism are lower in the regions of
lower recombination and in the regions of higher functional density or
divergence. These correlations persist after controlling for the variation in GC
content, density of simple repeats, selective constraint, mutation rate, and
depth of sequencing coverage. We argue that these results are most plausibly
explained by the effects of natural selection at functional
sitesβeither recurrent selective sweeps or background
selectionβon the levels of linked neutral polymorphism. Natural
selection at both coding and regulatory sites appears to affect linked neutral
polymorphism, reducing neutral polymorphism by 6% genome-wide and by
11% in the gene-rich half of the human genome. These findings suggest
that the effects of natural selection at linked sites cannot be ignored in the
study of neutral human polymorphism
Interconversion of Functional Motions between Mesophilic and Thermophilic Adenylate Kinases
Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK), for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well GΕ) simulation of mesophilic AK from E. coli (AKmeso) to simulations of thermophilic AK from Aquifex aeolicus (AKthermo). In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O) ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS) ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A βheatedβ simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the βcorresponding statesβ hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways
Genome Features of βDark-Flyβ, a Drosophila Line Reared Long-Term in a Dark Environment
Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed βDark-flyβ, which has been maintained in constant dark conditions for 57 years (1400 generations). We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs) and 4,700 insertions or deletions (InDels) in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products). Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence) in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH) regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation
- β¦