63 research outputs found

    Developing 'Skull Base Navigation' Software for Facial Nerve Surgery

    Get PDF

    Patient-specific polyvinyl alcohol phantom fabrication with ultrasound and x-ray contrast for brain tumor surgery planning

    Get PDF
    Phantoms are essential tools for clinical training, surgical planning and the development of novel medical devices. However, it is challenging to create anatomically accurate head phantoms with realistic brain imaging properties because standard fabrication methods are not optimized to replicate any patient-specific anatomical detail and 3D printing materials are not optimized for imaging properties. In order to test and validate a novel navigation system for use during brain tumor surgery, an anatomically accurate phantom with realistic imaging and mechanical properties was required. Therefore, a phantom was developed using real patient data as input and 3D printing of molds to fabricate a patient-specific head phantom comprising the skull, brain and tumor with both ultrasound and X-ray contrast. The phantom also had mechanical properties that allowed the phantom tissue to be manipulated in a similar manner to how human brain tissue is handled during surgery. The phantom was successfully tested during a surgical simulation in a virtual operating room. The phantom fabrication method uses commercially available materials and is easy to reproduce. The 3D printing files can be readily shared, and the technique can be adapted to encompass many different types of tumor

    Soft optically-tuneable fluorescence phantoms based on gel wax and quantum dots: a tissue surrogate for fluorescence imaging validation

    Get PDF
    Fluorescence-guided brain tumour resection, notably using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) for high-grade gliomas, has been demonstrated to provide better tissue differentiation, thereby improving patient outcomes when compared to white-light guidance. Novel fluorescence imaging devices aiming to increase detection specificity and sensitivity and targeting applications beyond high-grade gliomas are typically assessed by measurements using tissue-mimicking optical phantoms. The field currently lacks adequate phantoms with well-characterised tuneable optical properties. In this study, we developed soft tissue-mimicking fluorescence phantoms (TMFP) highly suitable for this purpose. We investigated: 1) the ability to independently tune optical and fluorescent properties; 2) the stability of the fluorescence signal over time; and 3) the potential of the proposed phantoms for imaging device validation. The TMFP is based on gel-wax which is an optically transparent mineral-oil based soft material. We embedded TiO2 as scattering material, carbon black oil-paint as background absorber, and CdTe Quantum Dots (QDs) as fluorophore because of its similar fluorescence spectrum to PpIX. Scattering and absorption properties were measured by a spectrophotometer, while the fluorescence was assessed by a wide-field fluorescence imaging system (WFFI) and a spectrometer. We demonstrated that: 1) the addition of QDs didn’t alter the phantom’s scattering which was only defined by the concentration of TiO2, whereas its absorption was defined by both QDs and colour oil paint; 2) the measured fluorescence intensity was linearlyproportional to the concentration of QDs; 3) the fluorescence intensity was stable over time (up to eight months); and 4) the fluorescence signal measured by the WFFI were strongly correlated to spectrometer measurements

    Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm

    Get PDF
    Automatic segmentation of vestibular schwannomas (VS) from magnetic resonance imaging (MRI) could significantly improve clinical workflow and assist patient management. We have previously developed a novel artificial intelligence framework based on a 2.5D convolutional neural network achieving excellent results equivalent to those achieved by an independent human annotator. Here, we provide the first publicly-available annotated imaging dataset of VS by releasing the data and annotations used in our prior work. This collection contains a labelled dataset of 484 MR images collected on 242 consecutive patients with a VS undergoing Gamma Knife Stereotactic Radiosurgery at a single institution. Data includes all segmentations and contours used in treatment planning and details of the administered dose. Implementation of our automated segmentation algorithm uses MONAI, a freely-available open-source framework for deep learning in healthcare imaging. These data will facilitate the development and validation of automated segmentation frameworks for VS and may also be used to develop other multi-modal algorithmic models

    Clinical Applications for Diffusion MRI and Tractography of Cranial Nerves Within the Posterior Fossa: A Systematic Review

    Get PDF
    Objective: This paper presents a systematic review of diffusion MRI (dMRI) and tractography of cranial nerves within the posterior fossa. We assess the effectiveness of the diffusion imaging methods used and examine their clinical applications. / Methods: The Pubmed, Web of Science and EMBASE databases were searched from January 1st 1997 to December 11th 2017 to identify relevant publications. Any study reporting the use of diffusion imaging and/or tractography in patients with confirmed cranial nerve pathology was eligible for selection. Study quality was assessed using the Methodological Index for Non-Randomized Studies (MINORS) tool. / Results: We included 41 studies comprising 16 studies of patients with trigeminal neuralgia (TN), 22 studies of patients with a posterior fossa tumor and three studies of patients with other pathologies. Most acquisition protocols used single-shot echo planar imaging (88%) with a single b-value of 1,000 s/mm2 (78%) but there was significant variation in the number of gradient directions, in-plane resolution, and slice thickness between studies. dMRI of the trigeminal nerve generated interpretable data in all cases. Analysis of diffusivity measurements found significantly lower fractional anisotropy (FA) values within the root entry zone of nerves affected by TN and FA values were significantly lower in patients with multiple sclerosis. Diffusivity values within the trigeminal nerve correlate with the effectiveness of surgical treatment and there is some evidence that pre-operative measurements may be predictive of treatment outcome. Fiber tractography was performed in 30 studies (73%). Most studies evaluating fiber tractography involved patients with a vestibular schwannoma (82%) and focused on generating tractography of the facial nerve to assist with surgical planning. Deterministic tractography using diffusion tensor imaging was performed in 93% of cases but the reported success rate and accuracy of generating fiber tracts from the acquired diffusion data varied considerably. / Conclusions: dMRI has the potential to inform our understanding of the microstructural changes that occur within the cranial nerves in various pathologies. Cranial nerve tractography is a promising technique but new avenues of using dMRI should be explored to optimize and improve its reliability

    Synthetic white balancing for intra-operative hyperspectral imaging

    Full text link
    Hyperspectral imaging shows promise for surgical applications to non-invasively provide spatially-resolved, spectral information. For calibration purposes, a white reference image of a highly-reflective Lambertian surface should be obtained under the same imaging conditions. Standard white references are not sterilizable, and so are unsuitable for surgical environments. We demonstrate the necessity for in situ white references and address this by proposing a novel, sterile, synthetic reference construction algorithm. The use of references obtained at different distances and lighting conditions to the subject were examined. Spectral and color reconstructions were compared with standard measurements qualitatively and quantitatively, using ΔE\Delta E and normalised RMSE respectively. The algorithm forms a composite image from a video of a standard sterile ruler, whose imperfect reflectivity is compensated for. The reference is modelled as the product of independent spatial and spectral components, and a scalar factor accounting for gain, exposure, and light intensity. Evaluation of synthetic references against ideal but non-sterile references is performed using the same metrics alongside pixel-by-pixel errors. Finally, intraoperative integration is assessed though cadaveric experiments. Improper white balancing leads to increases in all quantitative and qualitative errors. Synthetic references achieve median pixel-by-pixel errors lower than 6.5% and produce similar reconstructions and errors to an ideal reference. The algorithm integrated well into surgical workflow, achieving median pixel-by-pixel errors of 4.77%, while maintaining good spectral and color reconstruction.Comment: 22 pages, 10 figure

    Integrated multi-modality image-guided navigation for neurosurgery: open-source software platform using state-of-the-art clinical hardware.

    Get PDF
    PURPOSE: Image-guided surgery (IGS) is an integral part of modern neuro-oncology surgery. Navigated ultrasound provides the surgeon with reconstructed views of ultrasound data, but no commercial system presently permits its integration with other essential non-imaging-based intraoperative monitoring modalities such as intraoperative neuromonitoring. Such a system would be particularly useful in skull base neurosurgery. METHODS: We established functional and technical requirements of an integrated multi-modality IGS system tailored for skull base surgery with the ability to incorporate: (1) preoperative MRI data and associated 3D volume reconstructions, (2) real-time intraoperative neurophysiological data and (3) live reconstructed 3D ultrasound. We created an open-source software platform to integrate with readily available commercial hardware. We tested the accuracy of the system's ultrasound navigation and reconstruction using a polyvinyl alcohol phantom model and simulated the use of the complete navigation system in a clinical operating room using a patient-specific phantom model. RESULTS: Experimental validation of the system's navigated ultrasound component demonstrated accuracy of [Formula: see text] and a frame rate of 25 frames per second. Clinical simulation confirmed that system assembly was straightforward, could be achieved in a clinically acceptable time of [Formula: see text] and performed with a clinically acceptable level of accuracy. CONCLUSION: We present an integrated open-source research platform for multi-modality IGS. The present prototype system was tailored for neurosurgery and met all minimum design requirements focused on skull base surgery. Future work aims to optimise the system further by addressing the remaining target requirements

    Intraoperative hyperspectral label-free imaging: from system design to first-in-patient translation.

    Get PDF
    Despite advances in intraoperative surgical imaging, reliable discrimination of critical tissue during surgery remains challenging. As a result, decisions with potentially life-changing consequences for patients are still based on the surgeon's subjective visual assessment. Hyperspectral imaging (HSI) provides a promising solution for objective intraoperative tissue characterisation, with the advantages of being non-contact, non-ionising and non-invasive. However, while its potential to aid surgical decision-making has been investigated for a range of applications, to date no real-time intraoperative HSI (iHSI) system has been presented that follows critical design considerations to ensure a satisfactory integration into the surgical workflow. By establishing functional and technical requirements of an intraoperative system for surgery, we present an iHSI system design that allows for real-time wide-field HSI and responsive surgical guidance in a highly constrained operating theatre. Two systems exploiting state-of-the-art industrial HSI cameras, respectively using linescan and snapshot imaging technology, were designed and investigated by performing assessments against established design criteria and ex vivo tissue experiments. Finally, we report the use of our real-time iHSI system in a clinical feasibility case study as part of a spinal fusion surgery. Our results demonstrate seamless integration into existing surgical workflows

    The management and outcome for patients with chronic subdural hematoma: a prospective, multicenter, observational cohort study in the United Kingdom

    Get PDF
    OBJECTIVE: Symptomatic chronic subdural hematoma (CSDH) will become an increasingly common presentation in neurosurgical practice as the population ages, but quality evidence is still lacking to guide the optimal management for these patients. The British Neurosurgical Trainee Research Collaborative (BNTRC) was established by neurosurgical trainees in 2012 to improve research by combining the efforts of trainees in each of the United Kingdom (UK) and Ireland's neurosurgical units (NSUs). The authors present the first study by the BNTRC that describes current management and outcomes for patients with CSDH throughout the UK and Ireland. This provides a resource both for current clinical practice and future clinical research on CSDH. METHODS: Data on management and outcomes for patients with CSDH referred to UK and Ireland NSUs were collected prospectively over an 8-month period and audited against criteria predefined from the literature: NSU mortality < 5%, NSU morbidity < 10%, symptomatic recurrence within 60 days requiring repeat surgery < 20%, and unfavorable functional status (modified Rankin Scale score of 4–6) at NSU discharge < 30%. RESULTS: Data from 1205 patients in 26 NSUs were collected. Bur-hole craniostomy was the most common procedure (89%), and symptomatic recurrence requiring repeat surgery within 60 days was observed in 9% of patients. Criteria on mortality (2%), rate of recurrence (9%), and unfavorable functional outcome (22%) were met, but morbidity was greater than expected (14%). Multivariate analysis demonstrated that failure to insert a drain intraoperatively independently predicted recurrence and unfavorable functional outcome (p = 0.011 and p = 0.048, respectively). Increasing patient age (p < 0.00001), postoperative bed rest (p = 0.019), and use of a single bur hole (p = 0.020) independently predicted unfavorable functional outcomes, but prescription of high-flow oxygen or preoperative use of antiplatelet medications did not. CONCLUSIONS: This is the largest prospective CSDH study and helps establish national standards. It has confirmed in a real-world setting the effectiveness of placing a subdural drain. This study identified a number of modifiable prognostic factors but questions the necessity of some common aspects of CSDH management, such as enforced postoperative bed rest. Future studies should seek to establish how practitioners can optimize perioperative care of patients with CSDH to reduce morbidity as well as minimize CSDH recurrence. The BNTRC is unique worldwide, conducting multicenter trainee-led research and audits. This study demonstrates that collaborative research networks are powerful tools to interrogate clinical research questions

    Scribble-based Domain Adaptation via Co-segmentation

    Full text link
    Although deep convolutional networks have reached state-of-the-art performance in many medical image segmentation tasks, they have typically demonstrated poor generalisation capability. To be able to generalise from one domain (e.g. one imaging modality) to another, domain adaptation has to be performed. While supervised methods may lead to good performance, they require to fully annotate additional data which may not be an option in practice. In contrast, unsupervised methods don't need additional annotations but are usually unstable and hard to train. In this work, we propose a novel weakly-supervised method. Instead of requiring detailed but time-consuming annotations, scribbles on the target domain are used to perform domain adaptation. This paper introduces a new formulation of domain adaptation based on structured learning and co-segmentation. Our method is easy to train, thanks to the introduction of a regularised loss. The framework is validated on Vestibular Schwannoma segmentation (T1 to T2 scans). Our proposed method outperforms unsupervised approaches and achieves comparable performance to a fully-supervised approach.Comment: Accepted at MICCAI 202
    • …
    corecore