206 research outputs found

    From translation in multilingual emergencies and conflicts to crisis translation

    Get PDF

    CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    Get PDF
    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html

    Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.

    Get PDF
    Single-cell RNA sequencing (scRNA-seq) is a widely used technique for characterizing individual cells and studying gene expression at the single-cell level. Clustering plays a vital role in grouping similar cells together for various downstream analyses. However, the high sparsity and dimensionality of large scRNA-seq data pose challenges to clustering performance. Although several deep learning-based clustering algorithms have been proposed, most existing clustering methods have limitations in capturing the precise distribution types of the data or fully utilizing the relationships between cells, leaving a considerable scope for improving the clustering performance, particularly in detecting rare cell populations from large scRNA-seq data. We introduce DeepScena, a novel single-cell hierarchical clustering tool that fully incorporates nonlinear dimension reduction, negative binomial-based convolutional autoencoder for data fitting, and a self-supervision model for cell similarity enhancement. In comprehensive evaluation using multiple large-scale scRNA-seq datasets, DeepScena consistently outperformed seven popular clustering tools in terms of accuracy. Notably, DeepScena exhibits high proficiency in identifying rare cell populations within large datasets that contain large numbers of clusters. When applied to scRNA-seq data of multiple myeloma cells, DeepScena successfully identified not only previously labeled large cell types but also subpopulations in CD14 monocytes, T cells and natural killer cells, respectively

    Integrated transcriptomic analysis of Trichosporon Asahii uncovers the core genes and pathways of fluconazole resistance.

    Get PDF
    Trichosporon asahii (T. asahii) has emerged as a dangerous pathogen that causes rare but life-threatening infections. Its resistance to certain antifungal agents makes it difficult to treat, especially for patients undergoing long-term antibiotic therapy. In this study, we performed a series of fluconazole (FLC) perturbation experiments for two T. asahii strains, a clinical isolate stain CBS 2479 (T2) and an environmental isolate strain CBS 8904 (T8), to uncover potential genes and pathways involved in FLC resistance. We achieved 10 transcriptomes of T2 and T8 that were based on dose and time series of FLC perturbations. Systematic comparisons of the transcriptomes revealed 32 T2 genes and 25 T8 genes that are highly sensitive to different FLC perturbations. In both T2 and T8 strains with the phenotype of FLC resistance, the processes of oxidation-reduction and transmembrane transport were detected to be significantly changed. The antifungal susceptibility testing of FLC and penicillin revealed their resistance pathways are merged. Accumulated mutations were found in 564 T2 and 225 T8 genes, including four highly mutated genes that are functionally related to the target of rapamycin complex (TOR). Our study provides abundant data towards genome-wide understanding of the molecular basis of FLC resistance in T. asahii

    FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets.

    Get PDF
    Detecting binding motifs of combinatorial transcription factors (TFs) from chromatin immunoprecipitation sequencing (ChIP-seq) experiments is an important and challenging computational problem for understanding gene regulations. Although a number of motif-finding algorithms have been presented, most are either time consuming or have sub-optimal accuracy for processing large-scale datasets. In this article, we present a fully parallelized algorithm for detecting combinatorial motifs from ChIP-seq datasets by using Fisher combined method and OpenMP parallel design. Large scale validations on both synthetic data and 350 ChIP-seq datasets from the ENCODE database showed that FisherMP has not only super speeds on large datasets, but also has high accuracy when compared with multiple popular methods. By using FisherMP, we successfully detected combinatorial motifs of CTCF, YY1, MAZ, STAT3 and USF2 in chromosome X, suggesting that they are functional co-players in gene regulation and chromosomal organization. Integrative and statistical analysis of these TF-binding peaks clearly demonstrate that they are not only highly coordinated with each other, but that they are also correlated with histone modifications. FisherMP can be applied for integrative analysis of binding motifs and for predicting cis-regulatory modules from a large number of ChIP-seq datasets

    Empirical insights into industrial policy’s influence on phytoprotection innovation

    Get PDF
    Intelligent Phytoprotection is an important direction for the modern development of plant protection related disciplines, and its essence is the innovative application of new generation information technology industry, high-end equipment manufacturing industry, and digital industry related technologies in the traditional plant protection field. This article first identifies 224 International Patent Classification (IPC) Main groups in the field of intelligent phytoprotection technology based on the International Patent Classification System. And then combines with China’s industrial policy practice, we explore the impact of industrial policy on the application number of invention patents in the field of intelligent phytoprotection technology using the Difference-in-difference (DID) method and the Synthetic DID method. The study results showed that the implementation of industrial policy can significantly promote the patent application activities in the intelligent phytoprotection treatment group, with an average increase of 517 invention patent applications compared to the control group that is not affected by the policy. The research conclusion of this article suggests that for countries and regions, industrial policies are an important tool for promoting the innovation and development of intelligent phytoprotection related technologies
    corecore