279 research outputs found
Semantic Autoencoder for Zero-Shot Learning
Existing zero-shot learning (ZSL) models typically learn a projection
function from a feature space to a semantic embedding space (e.g.~attribute
space). However, such a projection function is only concerned with predicting
the training seen class semantic representation (e.g.~attribute prediction) or
classification. When applied to test data, which in the context of ZSL contains
different (unseen) classes without training data, a ZSL model typically suffers
from the project domain shift problem. In this work, we present a novel
solution to ZSL based on learning a Semantic AutoEncoder (SAE). Taking the
encoder-decoder paradigm, an encoder aims to project a visual feature vector
into the semantic space as in the existing ZSL models. However, the decoder
exerts an additional constraint, that is, the projection/code must be able to
reconstruct the original visual feature. We show that with this additional
reconstruction constraint, the learned projection function from the seen
classes is able to generalise better to the new unseen classes. Importantly,
the encoder and decoder are linear and symmetric which enable us to develop an
extremely efficient learning algorithm. Extensive experiments on six benchmark
datasets demonstrate that the proposed SAE outperforms significantly the
existing ZSL models with the additional benefit of lower computational cost.
Furthermore, when the SAE is applied to supervised clustering problem, it also
beats the state-of-the-art.Comment: accepted to CVPR201
Highly Efficient Regression for Scalable Person Re-Identification
Existing person re-identification models are poor for scaling up to large
data required in real-world applications due to: (1) Complexity: They employ
complex models for optimal performance resulting in high computational cost for
training at a large scale; (2) Inadaptability: Once trained, they are
unsuitable for incremental update to incorporate any new data available. This
work proposes a truly scalable solution to re-id by addressing both problems.
Specifically, a Highly Efficient Regression (HER) model is formulated by
embedding the Fisher's criterion to a ridge regression model for very fast
re-id model learning with scalable memory/storage usage. Importantly, this new
HER model supports faster than real-time incremental model updates therefore
making real-time active learning feasible in re-id with human-in-the-loop.
Extensive experiments show that such a simple and fast model not only
outperforms notably the state-of-the-art re-id methods, but also is more
scalable to large data with additional benefits to active learning for reducing
human labelling effort in re-id deployment
- β¦