33 research outputs found

    Cloning and Characterization of a Putative TAC1 Ortholog Associated with Leaf Angle in Maize (Zea mays L.)

    Get PDF
    BACKGROUND: Modifying plant architecture to increase photosynthesis efficiency and reduce shade avoidance response is very important for further yield improvement when crops are grown in high density. Identification of alleles controlling leaf angle in maize is needed to provide insight into molecular mechanism of leaf development and achieving ideal plant architecture to improve grain yield. METHODOLOGY/PRINCIPAL FINDINGS: The gene cloning was done by using comparative genomics, and then performing real-time polymerase chain reaction (RT-PCR) analysis to assay gene expression. The gene function was validated by sequence dissimilarity analysis and QTL mapping using a functional cleaved amplified polymorphism (CAP). CONCLUSIONS: The leaf angle is controlled by a major quantitative trait locus, ZmTAC1 (Zea mays L. Leaf Angle Control 1). ZmTAC1 has 4 exons encoding a protein with 263 amino acids, and its domains are the same as those of the rice OsTAC1 protein. ZmTAC1 was found to be located in the region of qLA2 by using the CAP marker and the F(2:3) families from the cross between Yu82 and Shen137. Real-time PCR analysis revealed ZmTAC1 expression was the highest in the leaf-sheath pulvinus, less in the leaf and shoot apical meristem, and the lowest in the root. A nucleotide difference in the 5'-untranslated region (UTR) between the compact inbred line Yu82 ("CTCC") and the expanded inbred line Shen137 ("CCCC") influences the expression level of ZmTAC1, further controlling the size of the leaf angle. Sequence verification of the change in the 5'-UTR revealed ZmTAC1 with "CTCC" was present in 13 compact inbred lines and ZmTAC1 with "CCCC" was present in 18 expanded inbred lines, indicating ZmTAC1 had been extensively utilized in breeding with regard to the improvement of the maize plant architecture

    IL-21 promotes myocardial ischaemia/reperfusion injury through the modulation of neutrophil infiltration.

    Get PDF
    BACKGROUND AND PURPOSE: The immune system plays an important role in driving the acute inflammatory response following myocardial ischaemia/reperfusion injury (MIRI). IL-21 is a pleiotropic cytokine with multiple immunomodulatory effects, but its role in MIRI is not known. EXPERIMENTAL APPROACH: Myocardial injury, neutrophil infiltration and the expression of neutrophil chemokines KC (CXCL1) and MIP-2 (CXCL2) were studied in a mouse model of MIRI. Effects of IL-21 on the expression of KC and MIP-2 in neonatal mouse cardiomyocytes (CMs) and cardiac fibroblasts (CFs) were determined by real-time PCR and ELISA. The signalling mechanisms underlying these effects were explored by western blot analysis. KEY RESULTS: IL-21 was elevated within the acute phase of murine MIRI. Neutralization of IL-21 attenuated myocardial injury, as illustrated by reduced infarct size, decreased cardiac troponin T levels and improved cardiac function, whereas exogenous IL-21 administration exerted opposite effects. IL-21 increased the infiltration of neutrophils and increased the expression of KC and MIP-2 in myocardial tissue following MIRI. Moreover, neutrophil depletion attenuated the IL-21-induced myocardial injury. Mechanistically, IL-21 increased the production of KC and MIP-2 in neonatal CMs and CFs, and enhanced neutrophil migration, as revealed by the migration assay. Furthermore, we demonstrated that this IL-21-mediated increase in chemokine expression involved the activation of Akt/NF-κB signalling in CMs and p38 MAPK/NF-κB signalling in CFs. CONCLUSIONS AND IMPLICATIONS: Our data provide novel evidence that IL-21 plays a pathogenic role in MIRI, most likely by promoting cardiac neutrophil infiltration. Therefore, targeting IL-21 may have therapeutic potential as a treatment for MIRI. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc

    Synthesis of Spherical Silver-coated Li4Ti5O12 Anode Material by a Sol-Gel-assisted Hydrothermal Method

    No full text
    Abstract ᅟ Ag-coated spherical Li4Ti5O12 composite was successfully synthesized via a sol-gel-assisted hydrothermal method using an ethylene glycol and silver nitrate mixture as the precursor, and the influence of the Ag coating contents on the electrochemical properties of its was extensively investigated. X-ray diffraction (XRD) analysis indicated that the Ag coating does not change the spinel structure of Li4Ti5O12. The electrochemical impedance spectroscopy (EIS) analyses demonstrated that the excellent electrical conductivity of the Li4Ti5O12/Ag resulted from the presence of the highly conducting silver coating layer. Additionally, the nano-thick silver layer, which was uniformly coated on the particles, significantly improved this material’s rate capability. As a consequence, the silver-coated micron-sized spherial Li4Ti5O12 exhibited excellent electrochemical performance. Thus, with an appropriate silver content of 5 wt.%, the Li4Ti5O12/Ag delivered the highest capacity of 186.34 mAh g−1 at 0.5C, which is higher than that of other samples, and maintained 92.69% of its initial capacity at 5C after 100 cycles. Even at 10C after 100 cycles, it still had a capacity retention of 89.17%, demonstrating remarkable cycling stability. Trial registration ISRCTN NARL-D-17-0056

    An Exact Data Mining Method for Finding Center Strings and All Their Instances

    No full text

    Methyl jasmonate- or gibberellins A(3)-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis

    No full text
    The microalga Haematococcus pluvialis accumulates astaxanthin in response to abiotic stresses. Since methyl jasmonate (MJ) and gibberellins A(3) (GA(3)) are involved in the stress responses of plants, the impact of these compounds on astaxanthin metabolism was studied. Alga cells treated separately with MJ and GA(3) accumulated more astaxanthin than the controls. MJ and GA(3) treatment increased the transcription of three beta-carotene ketolase genes (bkts). MJ- and GA(3)-responsive cis-acting elements were identified in the 5'-flanking regions of bkt genes. These results suggest that MJ and GA(3) constitute molecular signals in the network of astaxanthin accumulation. Induction of astaxanthin accumulation by MJ or GA(3) without any other stimuli presents an attractive application potential. (C) 2010 Elsevier Ltd. All rights reserved.The microalga Haematococcus pluvialis accumulates astaxanthin in response to abiotic stresses. Since methyl jasmonate (MJ) and gibberellins A(3) (GA(3)) are involved in the stress responses of plants, the impact of these compounds on astaxanthin metabolism was studied. Alga cells treated separately with MJ and GA(3) accumulated more astaxanthin than the controls. MJ and GA(3) treatment increased the transcription of three beta-carotene ketolase genes (bkts). MJ- and GA(3)-responsive cis-acting elements were identified in the 5'-flanking regions of bkt genes. These results suggest that MJ and GA(3) constitute molecular signals in the network of astaxanthin accumulation. Induction of astaxanthin accumulation by MJ or GA(3) without any other stimuli presents an attractive application potential. (C) 2010 Elsevier Ltd. All rights reserved

    Computing Resource Allocation Strategy Based on Cloud-Edge Cluster Collaboration in Internet of Vehicles

    No full text
    Edge computing plays a crucial role in the field of the Internet of Vehicles (IoV), meeting the resource and latency requirements of time-sensitive vehicle applications. However, the emergence of numerous compute-intensive and latency-sensitive applications, such as augmented reality and autonomous driving, has led to a situation where traditional edge computing architectures cannot meet the increasing application demands of the IoV. This paper extends the paradigm of vehicular edge computing to a collaborative cloud-edge cluster resource provisioning framework. Integrating compute resources from multiple Edge Service Providers (ESP) and the cloud enables horizontal and vertical collaborative computation offloading among service nodes. To facilitate resource sharing among different ESPs, we introduce a dynamic pricing model and utilize software-defined networking (SDN) to tackle this scenario’s complex resource management challenges. Furthermore, with the optimization objectives of minimizing task computation latency and maximizing the profits of ESPs, we establish a mathematical model. Before resource allocation, we employ a clustering algorithm to determine initial offloading decisions, reducing the dimensionality of the action space. Subsequently, we employ the Double Deep Q-Network (DDQN) algorithm to achieve a rational allocation of compute resources. Simulation results demonstrate that compared to the Deep Q-Network (DQN) algorithm and greedy strategy, the proposed approach reduces latency by 18.18% and 34.85%, respectively, while increasing the profits of edge service providers by 16.25% and 33.33%, respectively

    Highly soluble and stable recombinant holo-phycocyanin alpha subunit expressed in Escherichia coli

    No full text
    C-phycocyanin (Cpc) is one of the phycobiliproteins with highly fluorescent and various pharmacological activities Holo-Cpc-alpha Subunit (holo-CpcA) expressed in Escherichia colt resulted in low yield and tended to aggregate after purification in this Study, we constructed a new plasmid coding holo-CpcA fused with hexahistidine and maltose-binding protein tag, which designated as HMCpcA. to Improve Its Solubility and stability without the Impairment of its spectra anti fluorescent properties HMCpcA was significantly more stable over time and a wider range of pH as compared to holo-CpcA. In addition. both the solubility and yields of HMCpcA increase significantly We here provided an example to demonstrate that MBP could also Improve the stability of the protein it fused while it has been reported as a soluble fusion partner before. This novel fluorescent protein will facilitate the large-scale production and be potentially applicable for the development Of fluorescent probes, as well as antioxidant agents (C) 2009 Elsevier B V. All rights reserve

    Biosynthesis of fluorescent cyanobacterial allophycocyanin trimer in Escherichia coli

    No full text
    Allophycocyanin (APC), a cyanobacterial photosynthetic phycobiliprotein, functions in energy transfer as a light-harvesting protein. One of the prominent spectroscopic characteristics of APC is a strong red-shift in the absorption and emission maxima when monomers are assembled into a trimer. Previously, holo-APC alpha and beta subunits (holo-ApcA and ApcB) were successfully synthesized in Escherichia coli. In this study, both holo-subunits from Synechocystis sp. PCC 6803 were co-expressed in E. coli, and found to self-assemble into trimers. The recombinant APC trimer was purified by metal affinity and size-exclusion chromatography, and had a native structure identical to native APC, as determined by characteristic spectroscopic measurements, fluorescence quantum yield, tryptic digestion analysis, and molecular weight measurements. Combined with results from a study in which only the monomer was formed, our results indicate that bilin synthesis and the subsequent attachment to apo-subunits are important for the successful assembly of APC trimers. This is the first study to report on the assembly of recombinant ApcA and ApcB into a trimer with native structure. Our study provides a promising method for producing better fluorescent tags, as well as a method to facilitate the genetic analysis of APC trimer assembly and biological function.Allophycocyanin (APC), a cyanobacterial photosynthetic phycobiliprotein, functions in energy transfer as a light-harvesting protein. One of the prominent spectroscopic characteristics of APC is a strong red-shift in the absorption and emission maxima when monomers are assembled into a trimer. Previously, holo-APC alpha and beta subunits (holo-ApcA and ApcB) were successfully synthesized in Escherichia coli. In this study, both holo-subunits from Synechocystis sp. PCC 6803 were co-expressed in E. coli, and found to self-assemble into trimers. The recombinant APC trimer was purified by metal affinity and size-exclusion chromatography, and had a native structure identical to native APC, as determined by characteristic spectroscopic measurements, fluorescence quantum yield, tryptic digestion analysis, and molecular weight measurements. Combined with results from a study in which only the monomer was formed, our results indicate that bilin synthesis and the subsequent attachment to apo-subunits are important for the successful assembly of APC trimers. This is the first study to report on the assembly of recombinant ApcA and ApcB into a trimer with native structure. Our study provides a promising method for producing better fluorescent tags, as well as a method to facilitate the genetic analysis of APC trimer assembly and biological function
    corecore